Journal Club

Original Investigation | Cardiology

Development of Interstitial Lung Disease Among Patients With Atrial Fibrillation Receiving Oral Anticoagulants in Taiwan

Yi-Hsin Chan, MD; Tze-Fan Chao, MD, PhD; Shao-Wei Chen, MD, PhD; Hsin-Fu Lee, MD; Wei-Min Chen, MS; Pei-Ru Li, BS; Yung-Hsin Yeh, MD; Chi-Tai Kuo, MD; Lai-Chu See, PhD; Gregory Y. H. Lip, MD

JAMA Netw Open. 2022 Nov 1;5(11):e2243307.

Impact factor: 13.353 (2021)

Presenter 林彤安

Supervisor 蘇姵仔

Outline

01
 02
 03
 Introduction
 Methods
 Results
 04
 05
 06
 Discussion
 Conclusion
 Appraisal

Interstitial Lung Disease

A group of diffuse parenchymal lung disorders

Initiation
Epithelial damage
Endothelial activation
Immune-cell infiltration
Inflammation

Progression Fibroblast proliferation Fibrocyte recruitment Epithelial–mesenchymal transition Ongoing epithelial damage

Failed resolution Myofibroblast persistence Altered matricellular interaction Perturbed epithelial repair Ongoing epithelial damage

Diagnosis

- **Epithelial cells** Resident interstitial Fibrocyte from lung fibroblast circulation Recruitment Proliferation Differentiation Differentiation Persistence Proliferation Myofibroblasts and fibroblasts **Fibrosis** Cause fibrosis of the lungs
- ✓ High-resolution computed tomography pattern (HRCT)
- ✓ Histopathologic patterns

Risk factors

Smoking, substances, medications, and specific systemic conditions

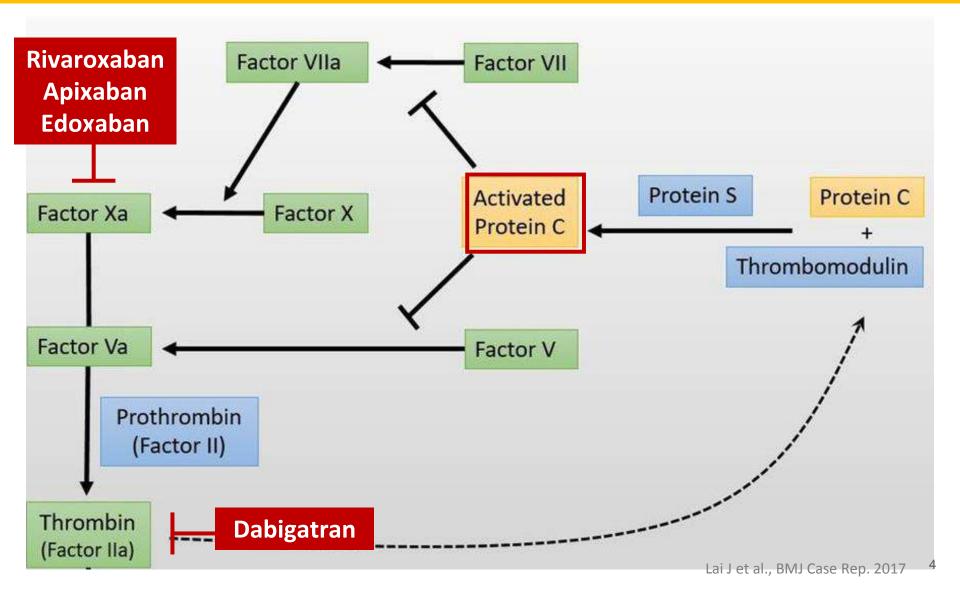
Drug-induced Interstitial Lung Disease

Immune-mediated

Direct, dose-dependent toxicity

Immune-checkpoint inhibitors

TNF-α inhibitors


Rituximab

Tocilizumab

Bleomycin
Methotrexate
Cyclophosphamide
Nitrofurantoin
Sulfasalazine
Amiodarone

Leads to the disruption of the lysosomal membranes of molecules through protein C activation and the subsequent release of toxic oxygen radicals

Probable Role of Anticoagulant in ILD

Existing Evidence (1)

Development of Interstitial Lung Disease after Initiation of Apixaban Anticoagulation Therapy

Case report from Japan

- Who developed acute respiratory failure while taking apixaban and were subsequently diagnosed as having ILD
- ② Between February 2013 and May 2015

Characteristics	Case 1	Case 2	Case 3	Case 4
Sex	M	M	M	M
Age (years)	91	87	79	81
Ethnicity	Asian	Asian	Asian	Asian
Body weight (kg)	57	45	53	78
Smoker	Yes	Yes	Yes	No
History of lung disease	ILD	None	Emphysema	Tuberculosis
History of ischemic stroke	No	Yes	No	No
Other comorbidities	Pacemaker for sick sinus syndrome	Traumatic ICH	Primary ICH	PCI for silent coronary artery disease
Prior anticoagulant use	No	Warfarin	Warfarin	Rivaroxaban, warfarin
Dosage of apixaban (mg/day)	5	5	5	10

Existing Evidence (2)

Direct Oral Anticoagulants and Interstitial Lung Disease: Emerging Clues from Pharmacovigilance

Emanuel Raschi¹ • Michele Fusaroli¹ · Igor Diemberger² · Elisabetta Poluzzi¹

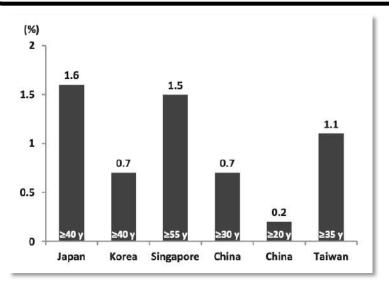
- ✓ Data source: FAERS, 2004-2019
- ✓ Retrospective pharmacovigilance disproportionality analysis (hypothesis-generating)

Drug	Main analysis ROR (95% CI)	Restricted to suspect reports ROR (95% CI)
DOACs	1.34 (1.25–1.43) [962]	1.32 (1.22–1.42) [716]
Factor-Xa inhibi- tors	1.60 (1.50–1.72) [821]	1.47 (1.36–1.60) [594]
Apixaban	1.93 (1.73–2.13) [362]	2.04 (1.81–2.3) [279]
Edoxaban	8.04 (6.47–9.79) [94]	5.20 (3.87–6.86) [47]
Rivaroxaban	1.18 (1.06–1.30) [377]	1.04 (0.92–1.17) [272]
Dabigatran	0.98 (0.83–1.14) [151]	0.91 (0.76–1.08) [128]

- Investigate the reporting of ILD associated with NOACs
- A total of 962 cases of ILD receiving NOACs out of 24720 patients

Age ≧ 65	Female	Asia
87%	34%	60%

Consistently emerged with higherthan-expected reporting of ILD


6

Nonvalvular Atrial Fibrillation in Taiwan

Definition

A supraventricular tachyarrhythmia with uncoordinated atrial electrical activation and consequently

ineffective atrial contraction

➤ Prevalence of AF in Taiwanese is 1.4% in men and 0.7% in women

2016 Guidelines of the THRS and the TSOC for the management of AF

The First-Ever Stroke Risk

Patients with newly diagnosed AF during 2002-2004 according to inpatient claim in NHIRD

Aged 30-55 with none of the CHA₂DS₂-VASc risk factors (excluding sex)

	Number	Case	Follow-up person year	Incidence
AF	790	48	4816	1.00
Non-AF	10173	181	73117	0.25

Sex-adjusted HR (95% CI) 4.09 (2.97-5.62)

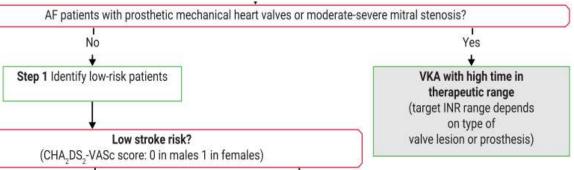
Management of NVAF

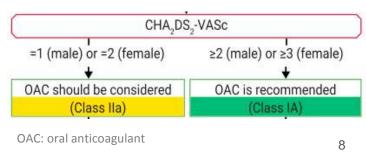
Rhythm control

Cardioversion

Antiarrhythmics

Catheter ablation

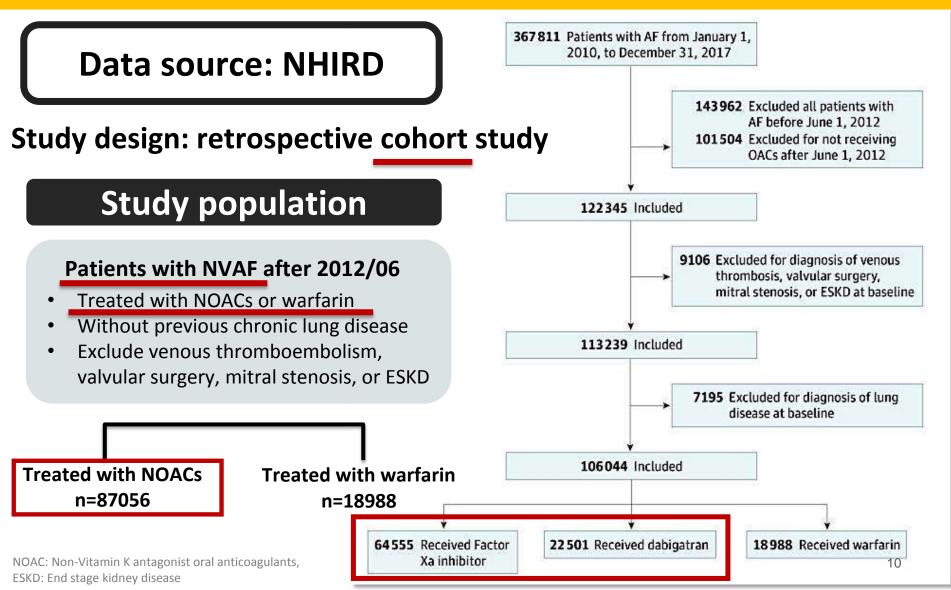

Rate control


Beta blocker Non-Dihydropyridine CCB

CCB: Calcium channel blockers

Anticoagulant

For stroke prevention in AF patients who are eligible for OAC, NOACs are recommended in preference to VKAs (excluding patients with mechanical heart valves or moderate-to-severe mitral stenosis). 423,424 For stroke risk assessment, a risk-factor-based approach is recommended, using the CHA₂DS₂-VASc clinical stroke risk score to initially identify patients at 'low stroke risk' (CHA₂DS₂-VASc score = 0 in men, or 1 in women) who should not be offered antithrombotic therapy. 334,388



Study Aim

- Emerging concern from case reports and pharmacovigilance analyses of a possible risk → class effect?
- Major clinical trials have reported adverse events (e.g. cough, dyspnea, and respiratory disorders) associated with common NOACs

Study Overview and Population

Exposure and Outcome of Interest

Study cohort

NOACs n=87056

Warfarin

n=18988

Exposure	Number	%
Dabigatran	22501	-
Apixaban	15386	23.83
Rivaroxaban	36756	56.94
Edoxaban	12413	19.23
Warfarin (ref)	18988	-

Primary outcome

New onset idiopathic ILD

Falsification outcome

Lung cancer Influenza Asthma

Follow-up Scheme

Exclusion Assessment Window History of venous thrombosis valvular surgery or mitral stenosis Days [-∞, 0]

Exclusion Assessment Window History of end stage renal disease Days [-∞, 0]

Exclusion Assessment Window History of chronic lung disease Days [-\infty, 0]

Covariate Assessment Window Days [-365, 0]

Co-medication Assessment Window Days [-90, 0]

Baseline period

Endpoints

New-onset idiopathic ILD

1 principal inpatient or 2 outpatient diagnostic codes

To the first occurrence of ILD, death, or end of the study


Follow-up period

Follow-up Window Days [0, Censor]*

Time (up to 2019/12/31)

Index date: the first prescription date for NOACs or warfarin

Baseline Covariates

Statistical Analysis

IPTW + stabilized weight (PSSW)

|SMD| of 0.1 or less→balanced

Generalized/gradient boosted models

Survival analysis

Kaplan-Meier curve and cox proportional hazards model

Sensitivity analysis

Subgroup analysis

Amiodarone

Baseline Characteristic (1)

n=106044

Age mean [SD]	73.4 [11.9]
Female n (%)	46049 (43.4%)

Patients, No. (%)			ASMD		
Characteristic	FXa inhibitor (n = 64 555)	Dabigatran (n = 22 501)	Warfarin (n = 18 988)	FXa inhibitor vs warfarin	Dabigatran vs warfarin
Age					
Mean (SD), y	74.7 (11.2)	73.3 (10.9)	69.4 (14.1)	0.4135	0.3105
<65	11 598 (18.0)	4550 (20.2)	7536 (39.7)	0.5009	0.4693
65-74	19 072 (29.5)	7322 (32.5)	3906 (20.6)	NA	NA
75-84	21 679 (33.6)	7441 (33.1)	4715 (24.8)	NA	NA
≥85	12 206 (18.9)	3188 (14.2)	2831 (14.9)	NA	NA
Sex					
Male	35 646 (55.2)	13 589 (60.4)	10 760 (56.7)	0.0292	0.0757
Female	28 909 (44.8)	8912 (39.6)	8228 (43.3)	NA	NA
CHA ₂ DS ₂ -VASc score, mean (SD)	3.3 (1.7)	3.2 (1.6)	2.6 (1.9)	0.3748	0.3140
HAS-BLED score, mean (SD)	2.6 (1.2)	2.5 (1.1)	2.1 (1.3)	0.3975	0.3437

Baseline Characteristic (2)

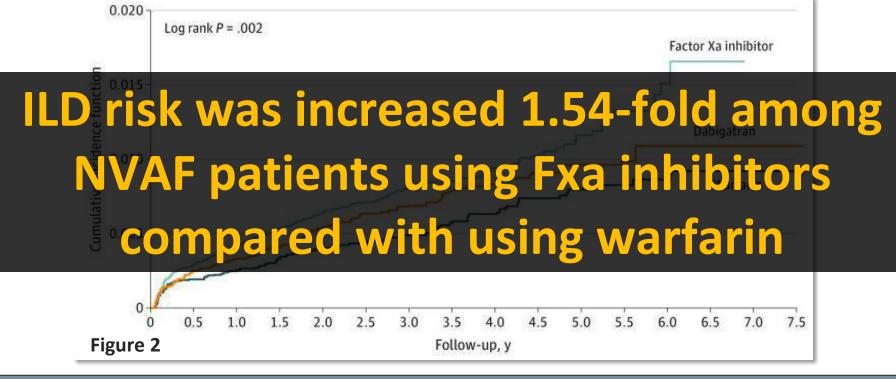
CHA2DS2-VASc

CHF, HTN, age ≥ 75, diabetes, previous stroke or TIA, vascular disease, age 65-74, female

HAS-BLED

HTN, abnormal kidney or liver function, stroke, bleeding history, labile INR, age ≥ 65 years, antiplatelet drug or alcohol use

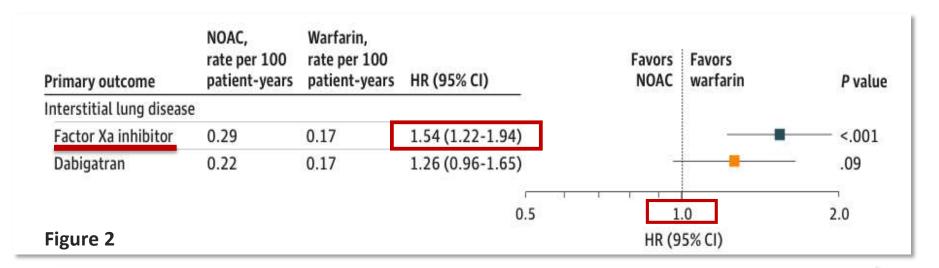
	ASMD				
Characteristic	FXa inhibitor (n = 64 555)	Dabigatran (n = 22 501)	Warfarin (n = 18 988)	FXa inhibitor vs warfarin	Dabigatran vs warfarin
Hypertension	34 387 (53.3)	10 931 (48.6)	7904 (41.6)	0.2347	0.1401
Diabetes	23 317 (36.1)	7786 (34.6)	5702 (30.0)	0.1297	0.0979
Dyslipidemia	29 329 (45.4)	9225 (41.0)	6411 (33.8)	0.2403	0.1500
Chronic liver disease	5569 (8.6)	1767 (7.9)	1485 (7.8)	0.0293	0.0012
CKD	11 238 (17.4)	2647 (11.8)	2600 (13.7)	0.1027	0.0579
Gout	10 235 (15.9)	3110 (13.8)	2590 (13.6)	0.0625	0.0053
CHF	5749 (8.9)	1644 (7.31)	1769 (9.3)	0.0143	0.0729
Chronic IHD	7289 (11.3)	1993 (8.9)	1650 (8.7)	0.0868	0.0059
Stroke	11 900 (18.4)	5382 (23.9)	2459 (13.0)	0.1512	0.2857
Cancer	6822 (10.6)	1920 (8.5)	1665 (8.8)	0.0609	0.0084
RA	223 (0.4)	74 (0.3)	49 (0.3)	0.0159	0.0131
PCI	4694 (7.3)	1161 (5.2)	955 (5.0)	0.0934	0.0059
CABG	354 (0.6)	59 (0.3)	210 (1.1)	0.0616	0.1025
History of bleeding	1029 (1.6)	305 (1.4)	305 (1.6)	0.0010	0.0208

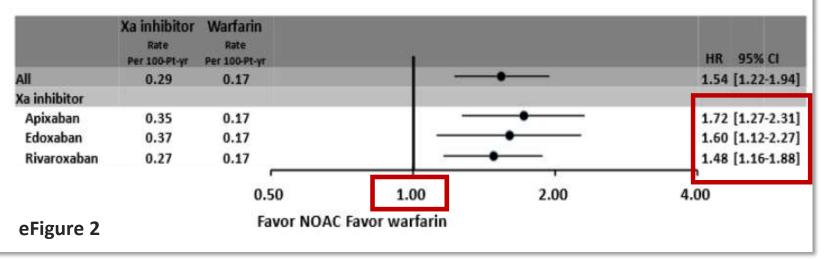

Baseline Characteristic (3)

	Patients, No. (%)			ASMD	
Characteristic	FXa inhibitor (n = 64555)	Dabigatran (n = 22 501)	Warfarin (n = 18 988)	FXa inhibitor vs warfarin	Dabigatran vs warfarir
Use of NSAIDs	15 955 (24.7)	5332 (23.7)	4866 (25.6)	0.0210	0.0448
Use of PPI	7987 (12.4)	2069 (9.2)	2551 (13.4)	0.0317	0.1341
Use of H ₂ RB	20 309 (31.5)	7140 (31.7)	6132 (32.3)	0.0179	0.0120
Use of ACEI, ARB subtype II	38 543 (59.7)	13 320 (59.2)	10 539 (55.5)	0.0851	0.0747
Use of β-blocker	39 399 (61.0)	13 000 (57.8)	11739 (61.8)	0.0163	0.0826
Use of verapamil or diltiazem	14 730 (22.8)	4744 (21.1)	4685 (24.7)	0.0436	0.0855
Use of statin	23 061 (35.7)	7751 (34.5)	4835 (25.5)	0.2240	0.1971
Use of APT	34 563 (53.5)	12 156 (54.0)	10 455 (55.1)	0.0305	0.0208
Use of amiodarone	19 787 (30.7)	5567 (24.7)	8065 (42.5)	0.2474	0.3822
Use of dronedarone	2659 (4.1)	353 (1.6)	322 (1.7)	0.1446	0.0100
Use of chemotherapy	988 (1.5)	256 (1.1)	263 (1.4)	0.0121	0.0222
Use of target therapy	999 (1.6)	215 (1.0)	141 (0.7)	0.0757	0.0232
Use of methotrexate	183 (0.3)	56 (0.3)	51 (0.3)	0.0028	0.0039
Use of anti-TNF agent	38 (0.1)	15 (0.1)	11 (0.1)	0.0004	0.0035
Use of corticosteroid	1713 (2.7)	464 (2.1)	583 (3.1)	0.0250	0.0638
Use of quinidine	70 (0.1)	23 (0.1)	49 (0.3)	0.0350	0.0368
Use of rifampicin	194 (0.3)	56 (0.3)	74 (0.4)	0.0152	0.0250
Use of macrolides	1452 (2.3)	387 (1.7)	504 (2.7)	0.0262	0.0639
Use of antifungal agent	571 (0.9)	113 (0.5)	261 (1.4)	0.0464	0.0906

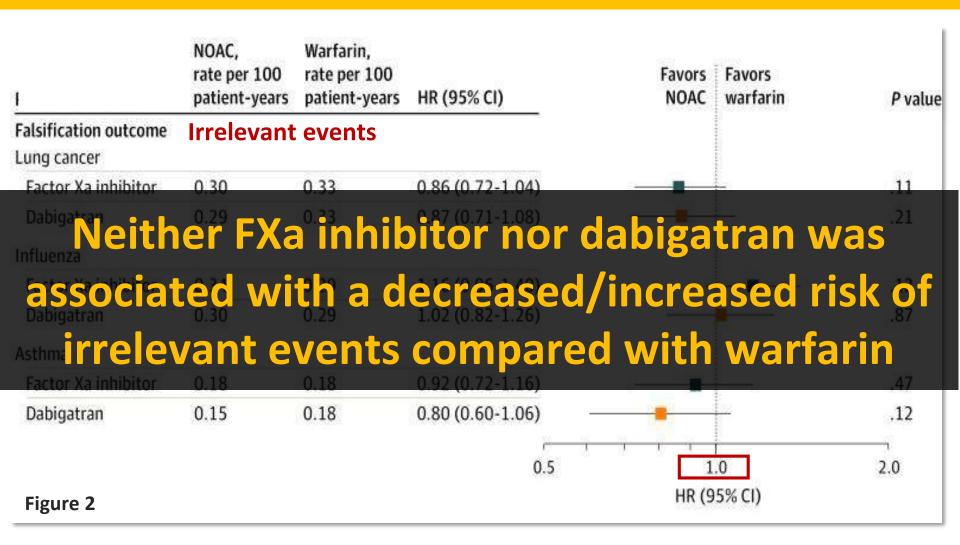
Frequently coprescribed with NOACs in patients with AF

After PSSW, all medication groups were well balanced in all characteristics

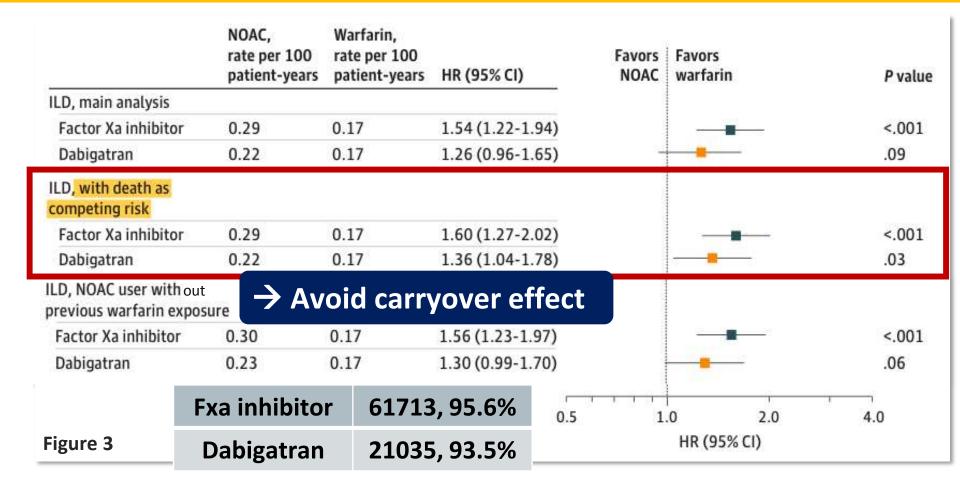

Main Analysis (1)



	Risk of incid	dent ILD	Absolute risk o	f incident ILD
FXa inhibitor	HR=1.54 (1.22-1.94)	P <0.001 Significant	+0.12 (0.29 vs 0.17)	(0.08-0.17)
Dabigatran	HR=1.26 (0.96-1.65)	P =0.09 Non-significant	+0.05 (0.22 vs 0.17)	(-0.001-0.10)


8

Main Analysis (2)



Falsification Outcomes

Sensitivity Analysis (1)

Sensitivity Analysis (2)

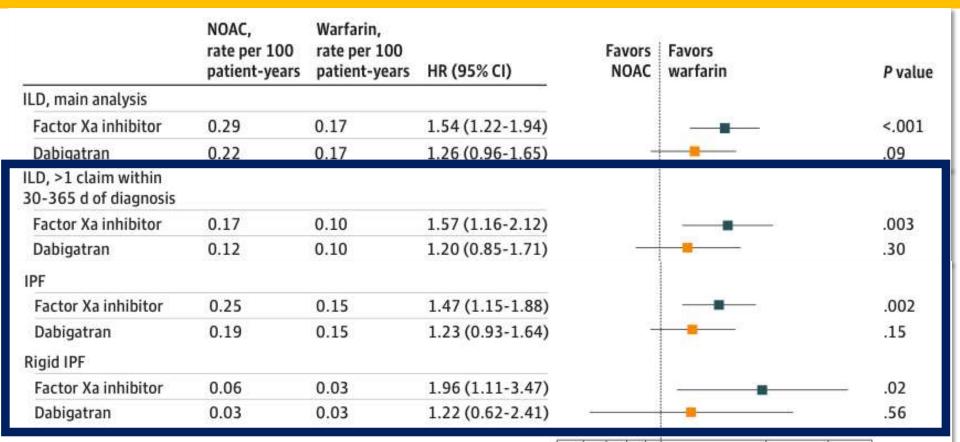
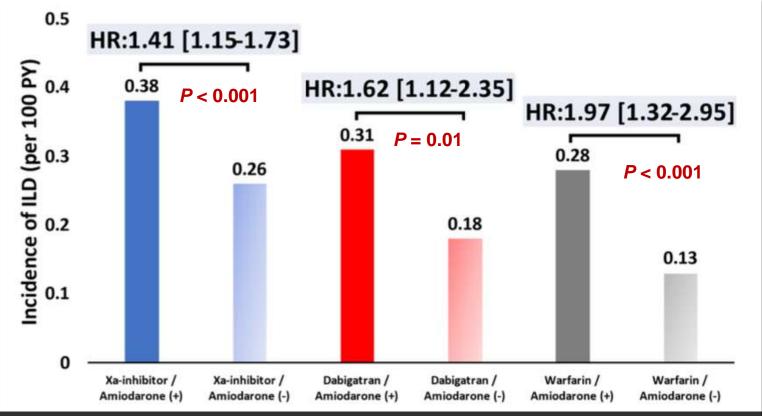



Figure 3

Further restrict the diagnosis of ILD to make sure the certainty of outcome measurement

4.0

Subgroup Analysis

Risk of incident ILD

The highest: FXa inhibitors w/ amiodarone The lowest: warfarin w/o amiodarone

Main Finding

Associated with higher risk of incident ILD compared with warfarin

Analysis Group	Main	Sensitivity	Subgroup
FXa inhibitor		Consistent with main analysis	Amiodarone
Dabigatran	Non- significantly	Consider death as competing risk	was a effect modifier

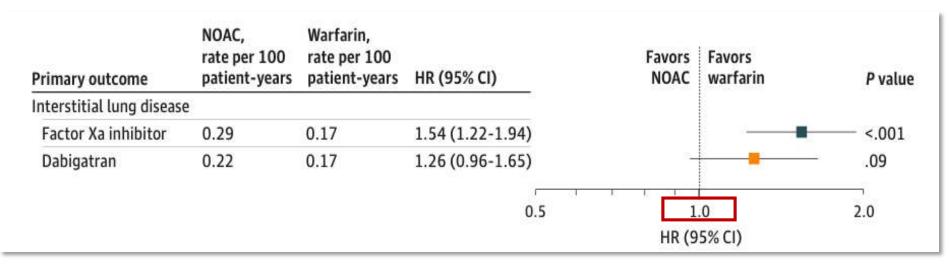
Compare with Previous Studies (1)

	Present study	Raschi E et al., Drug Saf. 2020
Population	NVAF	FAERS (non-defined)
Amiodarone	Effect modifier (stratify)	Excluded
Anticancer & anti-rheumatics	Baseline covariates	Excluded

Primary outcome	NOAC, rate per 100 patient-years	Warfarin, rate per 100 patient-years	HR (95% CI)
Interstitial lung disease			:
Factor Xa inhibitor	0.29	0.17	1.54 (1.22-1.94)
Dabigatran	0.22	0.17	1.26 (0.96-1.65)

	Xa inhibitor Rate Per 100-Pt-yr	Warfarin Rate Per 100-Pt-yr	HR 95% CI
All	0.29	0.17	1.54 [1.22-1.94]
Xa inhibitor			
Apixaban	0.35	0.17	1.72 [1.27-2.31]
Edoxaban	0.37	0.17	1.60 [1.12-2.27]
Rivaroxaban	0.27	0.17	1.48 [1.16-1.88]

Drug	Main analysis ROR (95% CI)	Restricted to suspect reports ROR (95% CI)
DOACs	1.34 (1.25–1.43) [962]	1.32 (1.22–1.42) [716]
Factor-Xa inhibi- tors	1.60 (1.50–1.72) [821]	1.47 (1.36–1.60) [594]
Apixaban	1.93 (1.73–2.13) [362]	2.04 (1.81–2.3) [279]
Edoxaban	8.04 (6.47–9.79) [94]	5.20 (3.87–6.86) [47]
Rivaroxaban	1.18 (1.06–1.30) [377]	1.04 (0.92–1.17) [272]
Dabigatran	0.98 (0.83–1.14) [151]	0.91 (0.76–1.08) [128]


25

Compare with Previous Studies (2)

	Raschi E et al., Drug Saf. 2020		Tomari S et al., J Stroke Cerebrovasc Dis. 2016			
Population	FAERS (non-defined)		Taking apixaban for stroke prevention among NVAF (Case report from Japan)			
					warfa	<mark>rin →</mark> apixaban
Previously unk exposed		nown	warfarin → apixaban		rivaroxaban → warfarin → apixaban	
	Fxa inhibitor	Dabigatran	4 days		(3 days
Onset	49 days	60 days	(misclassificat		sclassification?)	
(median) 49 days (40-182.5)		3 days (misclassification?)		90 days		
Pulse therapy Mechanical ventilation Outcome		MP 1 g × 3 days Yes Fatal	MP 1 g × 3 days No Recovered	MP 0.5 g × Yes Recovered	3 days	MP 1 g × 3 days Yes Fatal

Subsequent Treatment for ILD

	Antifibrotic agents (per 100 patients) (pirfenidone or nintedanib)	Immunosuppressants (per 100 patients)
FXa inhibitor	9.18	68.73
Dabigatran	5.56	68.25
Warfarin	3.03	74.75

Benefit Package of NHI

6.2.7. Nintedanib (Ofev) • pirfenidone (Pirespa) : (106/3/1 • 106/7/1 • 108/12/1 • 109/9/1)

- 1. 需檢附肺部 HRCT (High resolution computed tomography)影像檢查。
- 經專科醫師確診為特發性肺纖維化(Idiopathic pulmonary fibrosis, IPF)後,病人的用力肺活量(forced vital capacity, FVC) 在50~80%之間。
- 3. 用於經專科醫師確診為特發性肺纖維化,且 FVC>80%之病患,需具明顯症狀(病歷 須清楚記載如呼吸困難、喘或咳嗽等臨床症狀)。(108/12/1、109/9/1)
- 4. 停止治療條件:肺功能出現惡化(經確認病人的用力肺活量預測值降低10%或以上情況發生時),得以續用或得申請使用不同機轉藥物治療並觀察12週,如再測之 FVC 未改善應停止使用。(106/7/1、108/12/1、109/9/1)
- 5. 需經事前審查核准後使用,每24週需檢送評估資料再次申請。
- 6. Nintedanib 與 pirfenidone 不得同時併用。(106/7/1)

Limitations (1)

Due to data source (NHIRD)

- Smoking?
- Adherence?
- Renal function?
- Treatment dose?
- INR? TTR? (warfarin group)
- Asian only

The use of specific NOACs or warfarin may be guided accordingly

9106 Excluded for diagnosis of venous thrombosis, valvular surgery, mitral stenosis, or ESKD at baseline

Limitations (2)

Due to unmeasured confounder

- Confounding by indication may still exist
- ILD attributed to unmeasured drugs

Due to operational definition

- Underestimate of outcome?
- Misclassification? COVID-19?

Conclusion

- FXa inhibitors appeared to be associated with higher ILD risk among NVAF patients who were treated with OACs
 - ① HR=1.54 (1.22-1.94)
 - ② With relative small absolute risk (+0.12)

- Whereas dabigatran did not
 - ① HR=1.26 (0.96-1.65)

Clinical Impact (1)

Risk-benefit assessment

Inciden	Incidence (100pt per yr) (95%CI)			0pt per yr) (95%CI)
Factor Xa inhibitor	Dabigatran (n = 22,178.67)	Warfarin (n = 18,469.65)	Factor Xa inhibitor	Dabigatran
(n = 64,393.72)			vs.	vs.

Risk of all major bleeding was significantly

decreased among NVAF patients using

IS/SE 1.76 (1.69-1.84) 1.91 (1.79-2.02) 2.55 (2.41-2.69) -0.78 (-0.94, -0.63) -0.64 (-0.82, -0.46) NOACs.compared with using warfarin

Major GI bleeding	1.04 (0.99-1.09)	0.94 (0.86-1.02)	1.32 (1.22-1.42)	-0.28 (-0.40, -0.17)	-0.38 (-0.51, -0.26)
All major bleeding	1.61 (1.54-1.68)	1.38 (1.28-1.47)	2.39 (2.25-2.52)	-0.78 (-0.93, -0.63)	-1.01 (-1.17, -0.84)

Clinical Impact (2)

For physicians and pharmacists

- Monitoring potential development of ILD in NVAF patients receiving FXa inhibitors
- Especially those co-prescribed with amiodarone

ILD: Interstitial lung disease, NVAF: Nonvalvular Atrial Fibrillation, FXa: activated coagulation factor X

Patients education

- Importance of taking NOACs
- Early respiratory signs identification
- Remain vigilant for adverse lung effects

Appraisal

CASP Checklists -Cohort study checklist-

Section A: Are the results of the study valid?

Section B: What are the results?

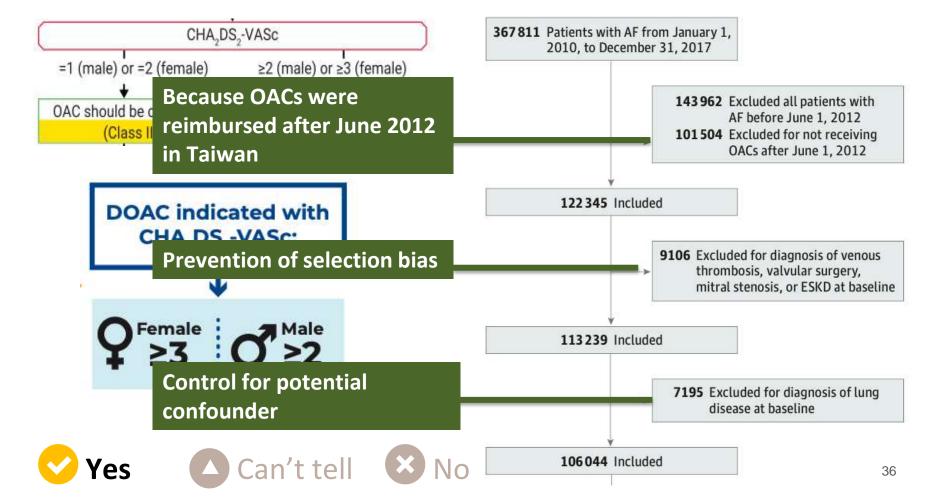
Section C: Will the results help locally?

Appraisal (1)

1. Did the study address a clearly focused issue?

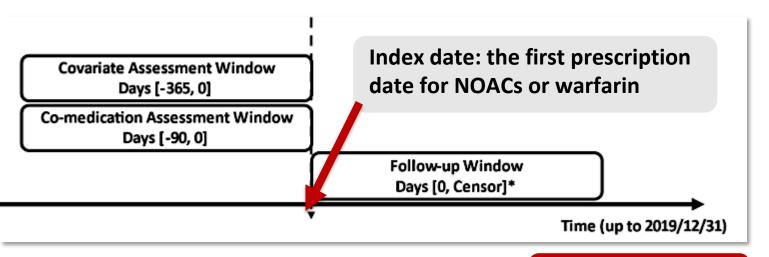
OBJECTIVE To evaluate the risk of incident ILD associated with the use of oral anticoagulants (OACs) in patients with nonvalvular atrial fibrillation (NVAF).

preexisting lung disease who received OACs from June 1, 2012, to December 31, 2017, were included. Propensity score stabilized weighting (PSSW) was used to balance covariates across the medication groups (FXa inhibitors, dabigatran, and warfarin, with warfarin as the reference). Patients were followed up from the drug index date until the onset of ILD, death, or end of the study (December 31, 2019), whichever occurred first. Data were analyzed from September 11, 2021, to August 3, 2022.



Appraisal (2)

2. Was the cohort recruited in an acceptable way?



Appraisal (3)

3. Was the exposure accurately measured to minimize bias?

Prevention of immortal time bias (misclassification)

The drug index date was defined as the first prescription date for NOACs or warfarin. The follow-up period was from the drug index date to the first occurrence of study outcome (ILD), death, or end of the study (December 31, 2019), whichever occurred first. This study, similar to most trials,

Appraisal (4)

4. Was the outcome accurately measured to minimize bias?

Outcomes

The study outcome was new-onset idiopathic ILD (*ICD 9-CM* codes 515-516.9; *ICD-10-CM* codes J84-J84.9) with at least 1 principal inpatient or 2 outpatient diagnostic codes after the drug index date. The *ICD-9-CM* and *ICD-10-CM* codes indicating the diagnosis of idiopathic ILD were suggested by the American Thoracic Society in 2016 (eTable 1 in the Supplement).¹⁴ To explore potential

To diagnose an ILD, your doctor will probably **order a chest X-ray or CT scan** to get a better look at your lungs. A lung function test may be used to measure your total lung capacity, which may have deteriorated due to the ILD.

Appraisal (5)

5. (a) Have the authors identified all important confounding factors? Dose, smoking, INR, TTR...etc

estimates. Second, different NOACs or warfarin had varying degrees of liver or kidney elimination; thus, the decision regarding the use of specific NOACs or warfarin may be guided by each patient's liver or kidney function. However, laboratory data were lacking in the NHIRD.

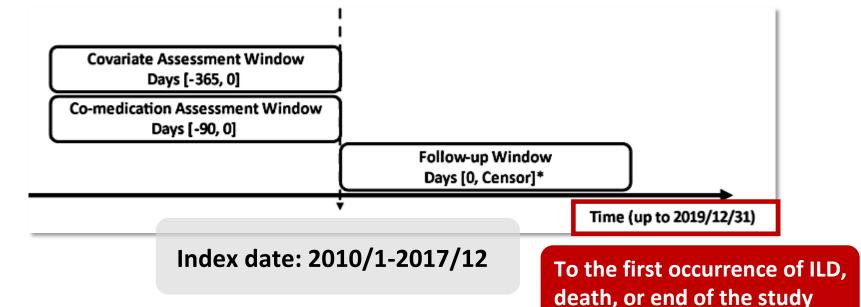
5. (b) Have they taken account of the confounding factors in the design and/or analysis?

Design

- ✓ Specification (criteria)
- ✓ Propensity score

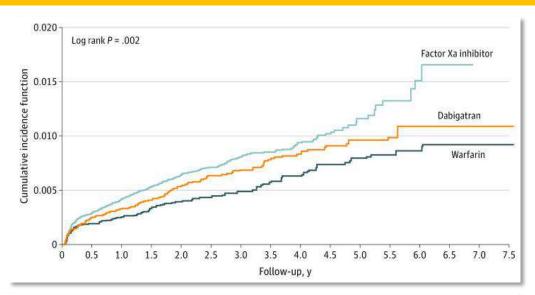
Analysis

- ✓ Stratification (subgroup)
- ✓ Sensitivity test
- √ Adjustment (COX model)

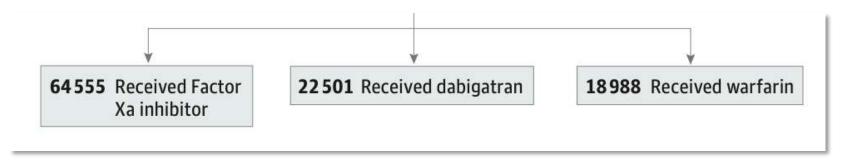


Appraisal (6)

- 6. (a) Was the follow up of subjects complete enough?
- 6. (b) Was the follow up of subjects long enough?



Appraisal (7)


7. What are the results of this study?

Primary outcome	NOAC, rate per 100 patient-years	Warfarin, rate per 100 patient-years	HR (95% CI)	Favors NOAC	Favors warfarin	P value
Interstitial lung disease	2					
Factor Xa inhibitor	0.29	0.17	1.54 (1.22-1.94)			<.001
Dabigatran	0.22	0.17	1.26 (0.96-1.65)	8=	-	09
			0.5	1	.0	2.0
				HR (9	5% CI)	

Appraisal (8)

8. How precise are the results?

Sufficient sample size

Primary outcome	NOAC, rate per 100 patient-years	Warfarin, rate per 100 patient-years	HR (95% CI)
Interstitial lung disease	ž		
Factor Xa inhibitor	0.29	0.17	1.54 (1.22-1.94)
Dabigatran	0.22	0.17	1.26 (0.96-1.65)

Appraisal (9)

9. Do you believe the results?

- Sufficient sample size
- Small range of confidence interval
- Main analysis (overall) was consistent with each of FXa inhibitors in hazard ratio and rage of 95% CI
- Five sensitivity analysis enhanced the robustness of result
- Appropriate methodology in statistical analysis

Appraisal (10)

10. Can the results be applied to the local population?

Data source: NHIRD

An insured population of more than 22 million people, that is, more than 99% Taiwan population, in the NHI program was established by the

NHI database includes information on birth date, sex, institution codes, type and date of care for inpatient services, diagnoses based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), and health care expenditure.

Appraisal (11)

11. Do the results of this study fit with other available evidence?

Development of Interstitial Lung Disease after Initiation of Apixaban Anticoagulation Therapy

Case report from Japan

Tomari S et al., J Stroke Cerebrovasc Dis. 2016

Drug Safety (2020) 43:1191–1194 https://doi.org/10.1007/s40264-020-00990-9

RESEARCH LETTER

Direct Oral Anticoagulants and Interstitial Lung Disease: Emerging Clues from Pharmacovigilance

Pharmacovigilance disproportionality analysis

Raschi E et al., Drug Saf. 2020

Appraisal (12)

12. What are the implication of this study for practice?

Meaning Findings of the study suggest that physicians should be vigilant in monitoring for any potential adverse lung outcomes of FXa inhibitors.

- Monitoring potential development of ILD in NVAF patients receiving FXa inhibitors
- Especially those co-prescribed with amiodarone

Journal Club

Original Investigation | Cardiology

Development of Interstitial Lung Disease Among Patients With Atrial Fibrillation Receiving Oral Anticoagulants in Taiwan

Yi-Hsin Chan, MD; Tze-Fan Chao, MD, PhD; Shao-Wei Chen, MD, PhD; Hsin-Fu Lee, MD; Wei-Min Chen, MS; Pei-Ru Li, BS; Yung-Hsin Yeh, MD; Chi-Tai Kuo, MD; Lai-Chu See, PhD; Gregory Y. H. Lip, MD

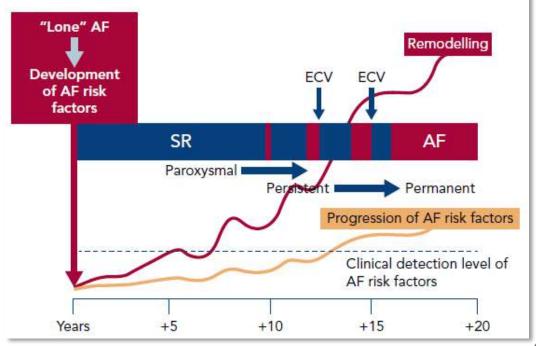
JAMA Netw Open. 2022 Nov 1;5(11):e2243307.

Impact factor: 13.353 (2021)

Thanks For Your Attention

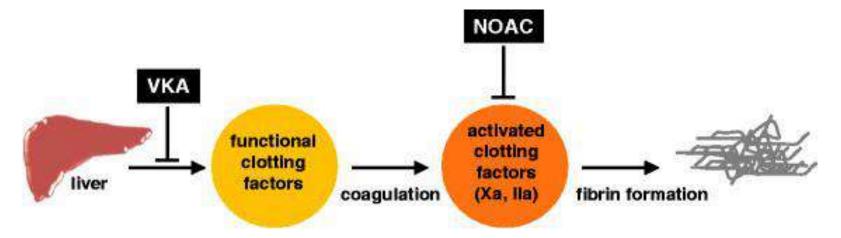
Nonvalvular Atrial Fibrillation

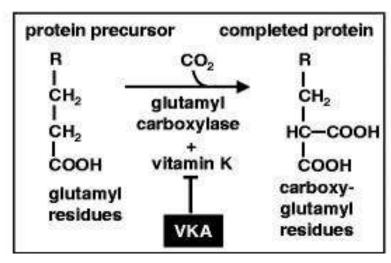
ECG showing AF (physician-confirmed)

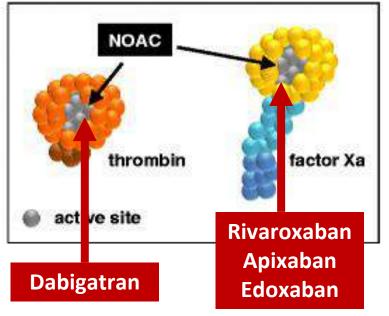

- Entire conventional 12-lead ECG, or
- An ECG strip with ≥ 30 sec of AF (including wearable-recorded ECGs)

 AF symptoms present or absent

Definition


A supraventricular tachyarrhythmia with uncoordinated atrial electrical activation and consequently ineffective atrial contraction




ECG: electrocardiogram, AF: Atrial Fibrillation, SR: sinus rhythm

Introduction Methods Results Discussion

Anticoagulant Use in NVAF

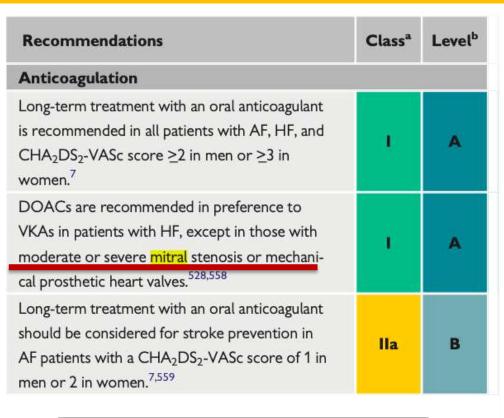
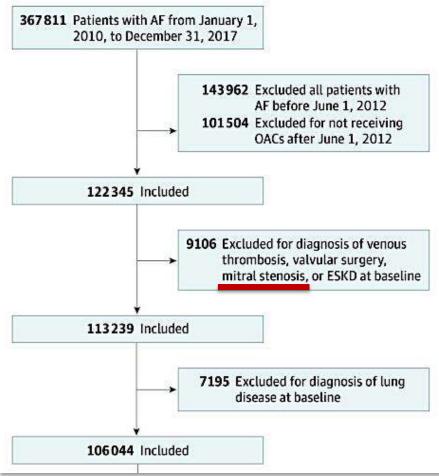

Introduction

Table 13 Drugs for rate control in AFa


	Intravenous administration	Usual oral maintenance dose	Contraindicated	
Beta-blockers ^b				
Metoprolol tartrate	2.5 - 5 mg i.v. bolus; up to 4 doses	25 - 100 mg b.i.d.	In case of asthma use beta-1-	
Metoprolol XL (succinate)	N/A	50 - 400 mg o.d.	blockers	
Bisoprolol	N/A	1.25 - 20 mg o.d.	Contraindicated in acute HF and	
Atenolol ^c	N/A	25 - 100 mg o.d.	history of severe bronchospasm	
Esmolol	500 $\mu g/kg$ i.v. bolus over 1 min; followed by 50 - 300 $\mu g/kg/min$	N/A		
Landiolol	100 μ g/kg i.v. bolus over 1 min, followed by 10 - 40 μ g/kg/min; in patients with cardiac dysfunction: 1 - 10 μ g/kg/min	N/A		
Nebivolol	N/A	2.5 - 10 mg o.d.		
Carvedilol	N/A	3.125 - 50 mg b.i.d.		
Non-dihydropyridine ca	lcium channel antagonists			
Verapamil	2.5 - 10 mg i.v. bolus over 5 min	40 mg b.i.d. to 480 mg (extended release) o.d.	Contraindicated in HFrEF Adapt doses in hepatic and renal	
Diltiazem	0.25 mg/kg i.v. bolus over 5 min, then 5 - 15 mg/h	60 mg t.i.d. to 360 mg (extended release) o.d.	impairment	

Introduction Methods Results Discussion

Exclusion Criteria

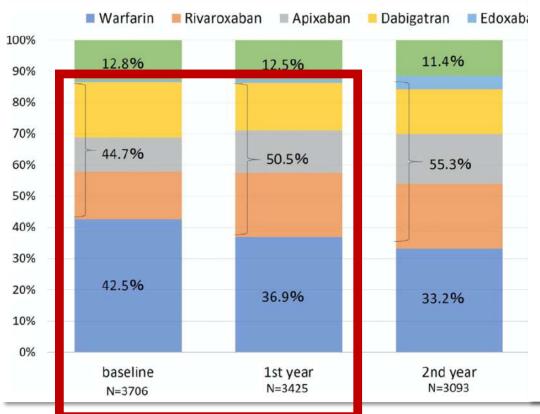
Limitation NHIRD

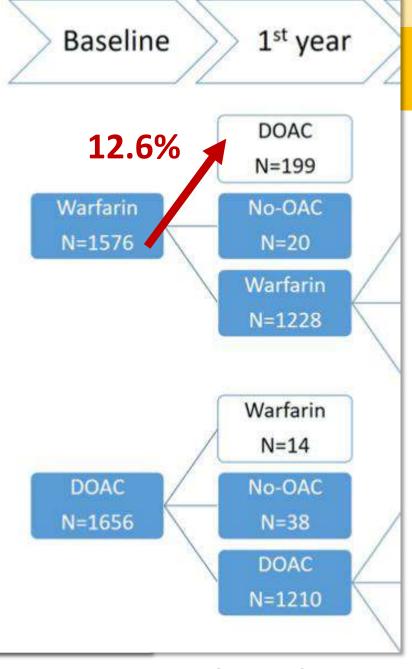
Covariates

Table 10 Clinical risk factors in the HAS-BLED score 395

Risk facto	ors and definitions	Points awarded
н	Uncontrolled hypertension SBP >160 mmHg	1
A	Abnormal renal and/or hepatic function Dialysis, transplant, serum creatinine >200 μ mol/L, cirrhosis, bilirubin > \times 2 upper limit of normal, AST/ALT/ALP >3 \times upper limit of normal	1 point for each
S	Stroke Previous ischaemic or haemorrhagic ^a stroke	1
В	Bleeding history or predisposition Previous major haemorrhage or anaemia or severe thrombocytopenia	1
L	Labile INR ^b TTR <60% in patient receiving VKA	1
E	Elderly Aged >65 years or extreme frailty	1
D	Drugs or excessive alcohol drinking Concomitant use of antiplatelet or NSAID; and/or excessive ^c alcohol per week	1 point for each
Maximum	score	9

Covariates after PSSW

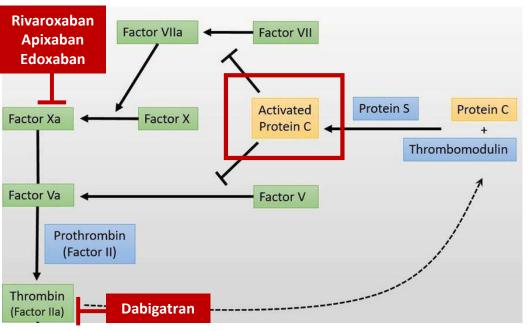

				ASMD	
	Factor Xa inhibitor	Dabigatran	Warfarin	Factor Xa inhibitor	Dabigatran
				vs.	vs.
	(n = 64,393.72)	(n = 22,178.67)	(n = 18,469.65)	Warfarin	Warfarin
Age					
(mean ± STD)	73.6±11.6	73.5±11.4	73.3±12.2	0.0265	0.0195
<65	14318.70 (22.24%)	4890.67 (22.05%)	4160.75 (22.53%)	0.0282	0.0282
65-74	18435.32 (28.63%)	6372.68 (28.73%)	5143.34 (27.85%)		
75-84	20559.84 (31.93%)	7103.54 (32.03%)	5905.56 (31.97%)		
>85	11079.86 (17.21%)	3811.78 (17.19%)	3260.00 (17.65%)		
Male	36421.26 (56.56%)	12599.74 (56.81%)	10398.16 (56.30%)	0.0053	0.0104
CHA_2DS_2 -VASc (mean ± STD)	3.2±1.7	3.2±1.7	3.2±1.7	0.0038	0.0037
HAS-BLED (mean ± STD)	2.5±1.2	2.5±1.2	2.5±1.2	0.0336	0.0285
Hypertension	32361.67 (50.26%)	11071.96 (49.92%)	9214.61 (49.89%)	0.0074	0.0006
Diabetes mellitus	22339.79 (34.69%)	7703.44 (34.73%)	6430.42 (34.82%)	0.0026	0.0018
Dyslipidemia	27326.59 (42.44%)	9346.67 (42.14%)	7687.20 (41.62%)	0.0167	0.0107
Chronic live disease	5333.76 (8.28%)	1820.47 (8.21%)	1506.09 (8.15%)	0.0047	0.0020
Chronic kidney disease	10034.06 (15.58%)	3407.56 (15.36%)	2936.50 (15.90%)	0.0088	0.0149
Gout	9672.22 (15.02%)	3290.48 (14.84%)	2797.60 (15.15%)	0.0036	0.0088
Congestive heart failure	5566.95 (8.65%)	1873.72 (8.45%)	1676.50 (9.08%)	0.0153	0.0225
Chronic ischemic heart disease	6651.41 (10.33%)	2271.33 (10.24%)	1900.64 (10.29%)	0.0013	0.0016
Stroke	11992.68 (18.62%)	4116.23 (18.56%)	3399.75 (18.41%)	0.0056	0.0040
Cancer	6335.71 (9.84%)	2142.37 (9.66%)	1825.70 (9.88%)	0.0015	0.0077
Rheumatoid arthritis	209.77 (0.33%)	65.86 (0.30%)	47.37 (0.26%)	0.0129	0.0078
PCI	4146.51 (6.44%)	1401.84 (6.32%)	1173.05 (6.35%)	0.0036	0.0013
CABG	365.05 (0.57%)	103.56 (0.47%)	102.00 (0.55%)	0.0020	0.0121
History of bleeding	991.11 (1.54%)	328.14 (1.48%)	300.86 (1.63%)	0.0072	0.0122


Covariates after PSSW

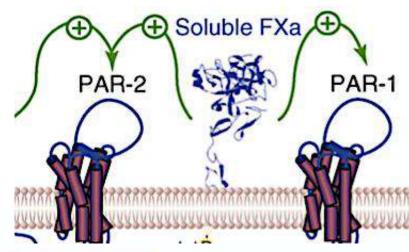
				ASMD	
	Factor Xa inhibitor	Dabigatran	Warfarin	Factor Xa inhibitor	Dabigatran
				vs.	vs.
	(n = 64,393.72)	(n = 22,178.67)	(n = 18,469.65)	Warfarin	Warfarin
Use of NSAIDs	15909.02 (24.71%)	5460.48 (24.62%)	4548.21 (24.63%)	0.0019	0.0001
Use of PPI	7653.56 (11.89%)	2584.31 (11.65%)	2197.10 (11.90%)	0.0003	0.0076
Use of H ₂ blocker	20365.21 (31.63%)	7044.47 (31.76%)	5931.67 (32.12%)	0.0106	0.0077
Use of ACEI or ARB	37938.29 (58.92%)	13069.26 (58.93%)	10936.28 (59.21%)	0.0061	0.0059
Use of beta-blocker	38981.94 (60.54%)	13392.62 (60.39%)	11195.55 (60.62%)	0.0016	0.0048
Use of verapamil or diltiazem	14689.91 (22.81%)	5005.83 (22.57%)	4282.69 (23.19%)	0.0090	0.0148
Use of statin	21675.78 (33.66%)	7433.07 (33.51%)	6037.39 (32.69%)	0.0208	0.0177
Use of antiplatelet	34701.04 (53.89%)	12004.07 (54.12%)	10132.04 (54.86%)	0.0196	0.0149
Use of amiodarone	20276.05 (31.49%)	6910.87 (31.16%)	5911.67 (32.01%)	0.0113	0.0184
Use of dronedarone	2032.89 (3.16%)	656.91 (2.96%)	560.31 (3.03%)	0.0072	0.0043
Use of chemotherapy	913.69 (1.42%)	291.56 (1.31%)	257.77 (1.40%)	0.0020	0.0071
Use of target therapy	822.63 (1.28%)	260.13 (1.17%)	219.26 (1.19%)	0.0082	0.0013
Use of methotrexate	174.96 (0.27%)	52.40 (0.24%)	45.92 (0.25%)	0.0046	0.0025
Use of anti-TNF agent	34.71 (0.05%)	12.13 (0.05%)	6.53 (0.04%)	0.0088	0.0092
Use of steroid	1669.95 (2.59%)	542.90 (2.45%)	497.37 (2.69%)	0.0063	0.0156
Use of quinidine	73.58 (0.11%)	22.60 (0.10%)	18.90 (0.10%)	0.0037	0.0001
Use of rifampicin	191.63 (0.30%)	59.22 (0.27%)	54.59 (0.30%)	0.0004	0.0054
Use of macrolides	1428.78 (2.22%)	466.90 (2.11%)	420.71 (2.28%)	0.0040	0.0119
Use of anti-fungal agent	565.49 (0.88%)	184.01 (0.83%)	168.97 (0.91%)	0.0039	0.0093

Sensitivity A

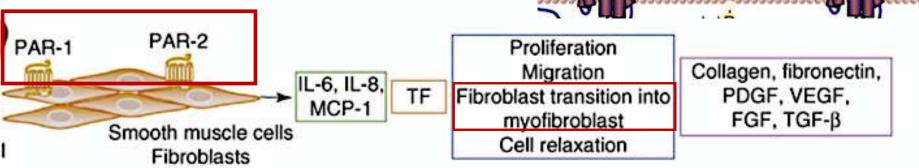
Changes in the proportions of anticoagulants from baseline to year 3 (Japan data)

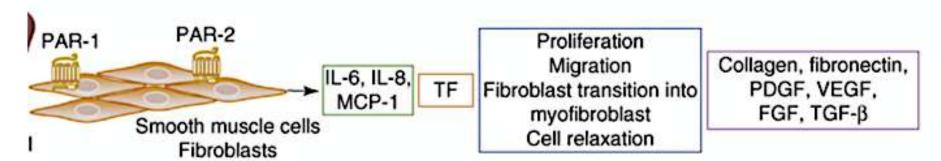

Diagnosis of Idiopathic Pulmonary Fibrosis

IPF suspected*		Histopathology pattern				
		UIP	Probable UIP	Indeterminate for UIP	Alternative diagnos	
	UIP	IPF	IPF	IPF	Non-IPF dx	
	Probable	IPF	IPF	IPF (Likely)**	Non-IPF dx	
	Indeterminate for UIP	IPF	IPF (Likely)**	Indeterminate for IPF ***	Non-IPF dx	
HRCT pattern	Alternative diagnos	IPF (Likely)** /non-IPF dx	Non-IPF dx	Non-IPF dx	Non-IPF dx	


- Moderate to severe traction bronchiectasis/bronchiolectasis in a man over aged 50 or in a woman over aged 60
- Extensive (0.30%) reticulation on HRCT scan and an age >70 years
- Increased neutrophils and/or absence of lymphocytosis in BAL fluid
- MDD reaches a confident diagnosis of IPF
- Without an adequate biopsy, unlikely to be IPF
- With an adequate biopsy, may be reclassified to a more specific diagnosis after MDD and/or additional consultation

Introduction Methods Results Discussion


Controversial Mechanism?


Controversial?

Lai J et al., BMJ Case Rep. 2017

Controversial Mechanism?

- PAR-1: The main receptor for thrombin
- PAR-2: As a key player in the progression of a wide pattern of pathologies at the fibro-proliferative interface

ARTHRITIS & RHEUMATISM
Vol. 60, No. 11, November 2009, pp 3455-3464
DOI 10.1002/art.24935
© 2009, American College of Rheumatology
In vitro data

Dabigatran, a Direct Thrombin Inhibitor, Demonstrates Antifibrotic Effects on Lung Fibroblasts

- When treated with dabigatran scleroderma lung myofibroblasts produce less CTGF, α-SMA, and collagen type I
- Dabigatran restrains important profibrotic events in lung fibroblasts and that this oral direct thrombin inhibitor warrants study as a potential anti-fibrotic drug for the treatment of fibrosing lung diseases

Borensztajn K et al., Am. J. Clin. Pathol., 2008

Management of Drug Induced ILD

Grade 2

Grade 3

Grade 4

RECOMMENDED

- Immediate discontinuation of the anticancer drugf
- Steroid therapy: 1-2 mg/kg/day prednisone or equivalent
- Consider antibiotic therapy when an overlapping infection cannot be excluded (fever, increased CRP and/or neutrophil counts)
- Consider TMP-SMX prophylaxis for opportunistic infections with high-dose steroids

RECOMMENDED IN REFRACTORY GRADE 2 AND IN GRADE 3 DILLD

- Consider hospitalisation and oxygen therapy until resolution of respiratory failure
- Timely and definitive discontinuation of the anticancer drug
- Steroid therapy: 1-2 mg/kg/day methylprednisolone or equivalent
- Consider antibiotic therapy when an overlapping infection cannot be excluded
- Consider TMP-SMX prophylaxis for opportunistic infections with high-dose steroids

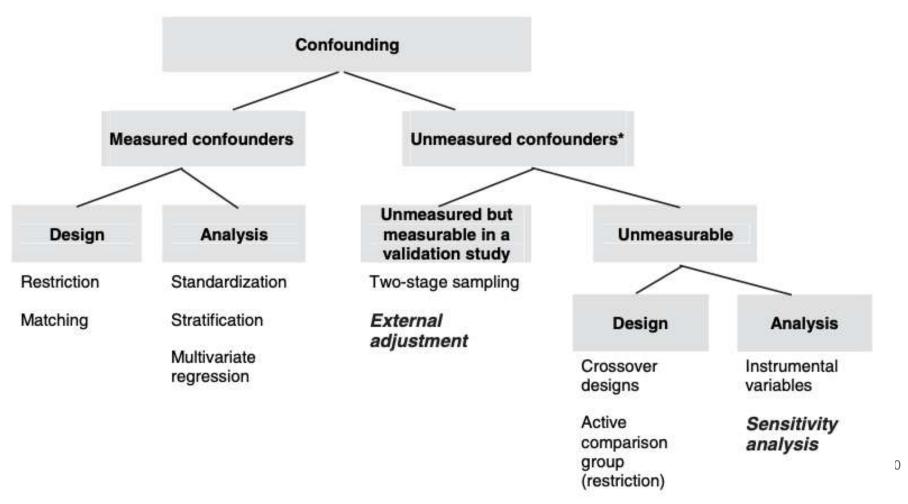
RECOMMENDED

- Hospitalization, oxygen therapy, supportive therapies
- Non-invasive or invasive mechanical ventilation according to the patient's clinical conditions and the life expectancy associated with the underlying pathology
- Immediate and definitive discontinuation of anticancer drug
- Steroid therapy: 2 mg/kg/day intravenous (methyl)prednisolone or equivalent^g
- Consider antibiotic therapy when an overlapping infection cannot be excluded
- TMP-SMX prophylaxis for opportunistic infections with high-dose steroids

^BDuration of steroid therapy to be determined according to the evolution of the clinical-radiological course, considering a possible therapy extension for up to 6 months, including tapering

PULSE THERAPY TO BE CONSIDERED IN SEVERE CASES

Methylprednisolone 500-1000 mg/day for 3 consecutive days


Prednisolone 1-2 mg/kg/day for 2-4 weeks

Tapering

Appraisal (5)

SENSITIVITY ANALYSIS FOR RESIDUAL CONFOUNDING

