
Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes (SURPASS-2)

報告藥師:**陳嬿宇 藥師** 指導藥師:**簡佳穎 藥師**

2022/5/18

- ADA Guideline 2022
- Tirzepatide

Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. Frías JP, et al. N Engl J Med. 2021 Aug 5;385(6):503-515.

CASP Checklist for RCTs

Background

ADA guideline 2022 Introduction of Tirzepatide

ADA Guideline 2022 Updates

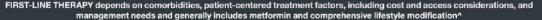
- Principle: consider additional comorbidities, patientcentered treatment factors, and management needs in choice of therapy.
- Recommendation removed from 2021 guideline: If the HbA1C target is not achieved after approximately 3 months, metformin can be combined with any one of the preferred six treatment options: sulfonylurea, thiazolidinedione, DPP-4 inhibitor, SGLT2 inhibitor, GLP-1 RA, or basal insulin.

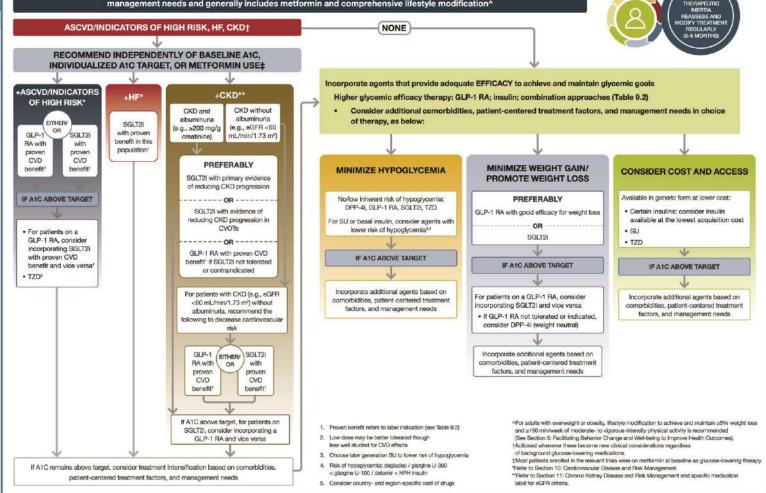
ADA Guideline 2022 Updates

□ First line therapy

- Depends on comorbidities, patient-centered treatment factors, and management. (Recommendation 9.4a)
- Atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease: GLP-1 RA or SGLT2i with or without metformin as appropriate initial therapy. (Recommendation 9.4b)

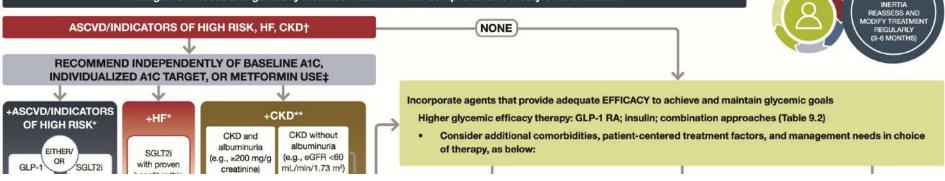
Combination therapy


- ✓ Initial combination therapy should be considered in patients presenting with HbA1c levels 1.5–2.0% above target.
- Treatment intensification <u>may not necessarily follow a pure</u> sequential addition.

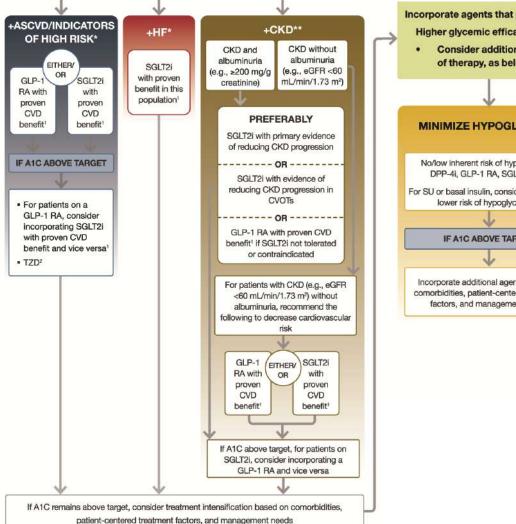

ADA Guideline 2022 Updates

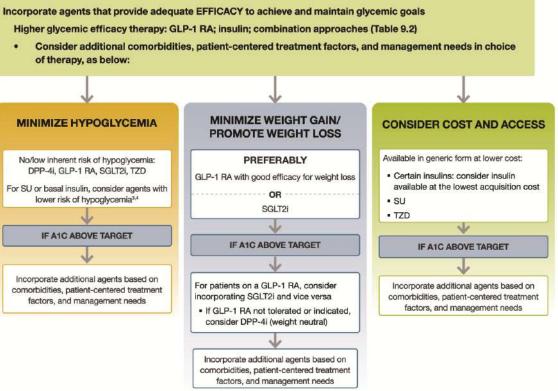
□ Injectable therapy

- If insulin is used, combination therapy with a glucagon-like peptide 1 receptor agonist is recommended for greater efficacy and durability of treatment effect. (Recommendation 9.11)
- When initiating combination injectable therapy, metformin therapy should be maintained, while sulfonylureas and DPP-4 inhibitors are typically weaned or discontinued.
- ✓ Adjunctive use of a thiazolidinedione or an SGLT2 inhibitor may help to improve control and reduce the amount of insulin needed, though potential side effects should be considered.



TO AVOID


PHARMACOLOGIC TREATMENT OF HYPERGLYCEMIA IN ADULTS WITH TYPE 2 DIABETES


FIRST-LINE THERAPY depends on comorbidities, patient-centered treatment factors, including cost and access considerations, and management needs and generally includes metformin and comprehensive lifestyle modification^

TO AVOID

THERAPEUTIC

GLP-1/GIP Comparison

Incretin	Glucagon-Like Peptide (GLP-1)	Glucose-Dependent Insulinotropic Polypeptide (GIP)		
Composition	30 amino acid peptide	4 amino acid peptide		
Receptor Expression	Pancreas, gastrointestinal tract, kidney, heart, brain	Pancreas, adipose tissue, gastric mucosa, heart, adrenal cortex, bone, brain		
Metabolism	Half-life: 1-2 mins Metabolised by DPP-4	Half-life: 4-7 mins Metabolised by DPP-4		

Glucagon-like Peptide-1 Receptor Agonism

OIndirect Action

Central Nervous System ↑ Satiety **Central Nervous System** ↓ Food Intake ↑ Nausea ↓ Body Weight Pancreas • 个 Insulin J Glucagon Stomach Skeletal ↓ Gastric Emptying Muscle Liver Systemic ↓ Hyperglycemia Stomach Liver Pancreas ubcutaneous White: Adipose Tissue ↑ Insulin Sensitivity Hepatic Glucose Production ↓ Ectopic Lipid Accumulation Glucose-dependent Insulinotropic Polypeptide Receptor Agonism Glucagon-like Peptide 1 Receptor Agonism

Glucose-dependent Insulinotropic Polypeptide Receptor Agonism

Central Nervous System

- Food Intake
- Vausea
- J Body Weight

Pancreas

- ↑ Insulin
- ↑ Glucagon

Subcutaneous White Adipose Tissue

- ↑ Insulin Sensitivity
- ↑ Lipid Buffering Capacity
- ↑ Blood Flow
- ↑ Storage Capacity
- ↓ Proinflammatory Immune Cell Infiltration

Systemic

- Hyperglycemia
- ↓ Dietary Triglyceride

Skeletal Muscle

- 个 Insulin Sensitivity
- 个 Metabolic Flexibility

Samms, Ricardo & Coghlan, Matthew & Sloop, Kyle. (2020). How May GIP Enhance the Therapeutic Efficacy of GLP-1?. Trends in Endocrinology & Metabolism. 31. 10.1016/j.tem.2020.02.006.

Trends in Endocrinology & Metabolism

11

GLP-1/GIP Comparison

Incretin	GLP-1	GIP	Safeguarding against hypoglycemia			
Hypoglycaemic State	-	Glucagon↑				
Normoglycaemic State	Glucagon↓	Glucagon↑				
Hyperglycaemic State	Glucagon↓	Glucagon <mark></mark> ↑/-	Insulinotropic potency is			
Glucose-dependent insulin secretion	Insulin↑	Insulin↑↑	restored if the hyperglycaemia is first reduced by another agent			
			12			

Tirzepatide

- Dual GIP and GLP-1 receptor agonist
- 39 amino acid peptide based on the native GIP sequence which attached to fatty diacid
- □ Albumin binding: prolonged half-life (5 days) \rightarrow QW dosing □ Synergic effect:
 - ✓ Significantly increased insulin response
 - ✓ Glucagonostatic response
 - ✓ Central satiety and anorexigenic effect; weight loss

Trial/ Identifier	Estimated enrolment	Concomitant therapy	TZP groups	Comparator group	Primary outcome	Treatment duration (weeks)	Primary outcome completion date	
SURPASS-1	472	None	5 mg	Placebo	Change from baseline in HbA1c	40	Oct 2020	
NCT03954834			10 mg					
			15 mg					
SURPASS-2	1881	Metformin	5 mg	Semaglutide	Change from baseline in HbA1c	40	Feb 2021	
NCT03987919			10 mg					
			15 mg					
SURPASS-3	1420	Metformin or metformin plus	5 mg	Insulin	Change from baseline in HbA1c	52	Jan 2021	
NCT03882970		SGLT2i	10 mg	degludec				
			15 mg					
SURPASS-4	1878	1–3 OAMs of metformin, SGLT2i or SU	5 mg	Insulin	Change from baseline in HbA1c	52	June 2021	
NCT03730662			10 mg	glargine				
			15 mg					
SURPASS-5	472	Insulin glargine once daily with or	5 mg	Placebo	Change from baseline in HbA1c	40	Feb 2021	
NCT04039503		without metformin	10 mg					
			15 mg					
SURPASS-6	1182	Insulin glargine once daily with or	5 mg	Insulin lispro	Change from baseline in HbA1c	52	Aug 2022	
NCT04537923		without metformin	10 mg					
			15 mg					

Table 3 Overview of the SURPASS phase 3 clinical trials of tirzepatide for the treatment of T2DM

Trial/Identifier	Estimated Enrollment	Concomitant Therapy	TZP groups	Comparator Group	Primary Outcome	Treatment Duration (weeks)	Primary Outcome Completion Date
SURPASS-J mono NCT 03861052	lananaa	OAM-naïve or OAM monotherapy		Dulaglutide 0.75 mg	Change from baseline in HbA1c	52	April 2021
SURPASS-J combo NCT 03861039	- Japanese	OAM monotherapy	5/10/15 mg		Number of participants with ≥ 1 SAE	52	Mar 2021
SURPASS-AP combo NCT 04093752	combo		-	Insulin glargine	Change from baseline in HbA1c	40	Feb 2022
SURPASS-CVOT NCT04255433	12,500	Oral or injectable anti- hyperglycaemic medications	Maximum tolerated dose up to 15 mg	Dulaglutide 1.5 mg	Cardiovascular outcomes	Event driven	Oct 2024
SURMOUNT-1 NCT04184622	Obesity or Overweight	N/A	5/10/15 mg	Placebo	Percent change from baseline in body weight	72	April 2022

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

2

Journal

Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes

 Juan P. Frías, M.D., Melanie J. Davies, M.D., Julio Rosenstock, M.D., Federico C. Pérez Manghi, M.D., Laura Fernández Landó, M.D.,
 Brandon K. Bergman, Pharm.D., Bing Liu, Ph.D., Xuewei Cui, Ph.D., and Katelyn Brown, Pharm.D., for the SURPASS-2 Investigators*

16

Frías JP, Davies MJ, Rosenstock J, *et al.* Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med. 2021 Aug 5;385(6):503-515. doi: 10.1056/NEJMoa2107519. Epub 2021 Jun 25. PMID: 34170647

Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes

 Juan P. Frías, M.D., Melanie J. Davies, M.D., Julio Rosenstock, M.D., Federico C. Pérez Manghi, M.D., Laura Fernández Landó, M.D.,
 Brandon K. Bergman, Pharm.D., Bing Liu, Ph.D., Xuewei Cui, Ph.D., and Katelyn Brown, Pharm.D., for the SURPASS-2 Investigators*

ABSTRACT

BACKGROUND

Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagonlike peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown.

METHODS

In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks.

END POINTS

The primary end point was the change in the glycated hemoglobin level from baseline to week 40. The key secondary end points (in a graphical testing scheme, described in the Statistical Analyses Methods section in the Supplementary Appendix, Figs. S2 through S6, and Table S2) were the change in body weight from baseline to week 40 and the attainment of glycated hemo-globin level targets of less than 7.0% and less than 5.7%. Other end points were attainment of a glycated hemoglobin level of 6.5% or less and weight loss of at least 5%, 10%, or 15%; the mean change from baseline in the fasting serum

Trial Design

- 40-week, open-label, parallel-group, randomized, active-controlled, phase 3 trial.
- 1,879 patients with type 2 diabetes were randomly assigned in a 1:1:1:1 ratio to receive tirzepatide 5 mg, 10 mg, 15 mg; or semaglutide 1 mg.
 Funded by Eli Lilly.

Trial Design-Inclusion Criteria

- **T**ype 2 diabetes
- □ HbA1c ≥7.0% (≥53 mmol/mol) to ≤10.5% (≤91 mmol/mol)
- □ Are of stable weight (±5%) ≥3 months with body mass index (BMI) ≥25 kg/m²
- □ Have been on stable diabetes treatment with metformin ≥1500 mg/day

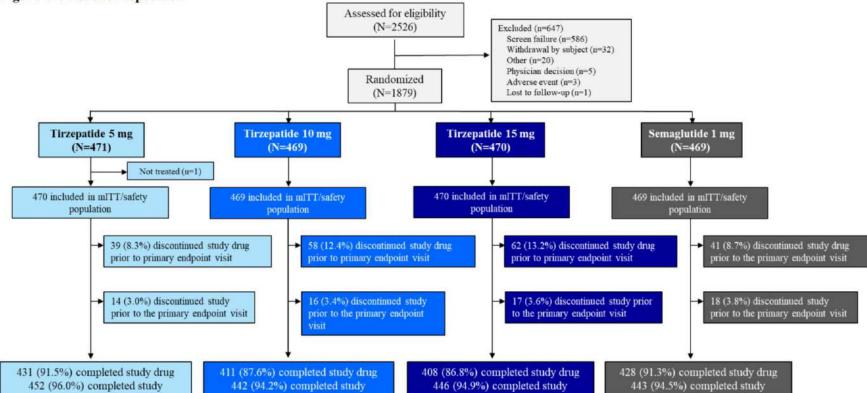
Trial Design-Exclusion Criteria

- **T**ype 1 diabetes
- **□** eGFR < 45 ml/minute/1.73 m2
- □ History of chronic or acute pancreatitis
- History of diabetic retinopathy or diabetic maculopathy
- History of ketoacidosis or sever hypoglycemia
- Acute myocardial infarction, cerebrovascular accident; hospitalization due to congestive heart failure or NYHA Classification IV CHF.

Method

- Once weekly subcutaneous injection of tirzepatide (dose were double-blinded) or semaglutide.
- Dose escalated every 4 week until randomly assigned dose was reached (associated to gastrointestinalrelated side-effect.)
- 40 weeks of treatment period+4 weeks of safety follow-up.

Endpoints


- Primary endpoint: change in the HbA1c from baseline to week 40.
- □ Secondary endpoints:
 - ✓ Change in body weight from baseline to week 40
 ✓ Lipid level
- Safety endpoints: adverse events, hypersensitivity reactions...

Statistical Analysis

- Modified intention-to-treat population
 At least 90% power to show noninferiority of tirzepatide compare with semaglutide; with two-side alpha value of 0.025.
- □ 1,872 patients would be eligible, assuming a dropout rate of 28%.

Result-Flow Chart

Figure S7. Patient Disposition

25

Characteristic		Tirzepatide	Semaglutide	Total (N = 1878)	
	5 mg (N=470)	10 mg (N=469)	15 mg (N=470)	1 mg (N=469)	
Age — yr	56.3±10.0	57.2±10.5	55.9±10.4	56.9±10.8	56.6±10.4
Female sex — no. (%)	265 (56.4)	231 (49.3)	256 (54.5)	244 (52.0)	996 (53.0)
Race or ethnic group — no. (%)†					
American Indian or Alaska Native	53 (11.3)	53 (11.3)	57 (12.1)	45 (9.6)	208 (11.1)
Asian	6 (1.3)	11 (2.3) 21 (4.5)	5 (1.1) 15 (3.2)	3 (0.6)	25 (1.3) 79 (4.2)
Black	28 (6.0)			15 (3.2)	
White	382 (81.3)	376 (80.2)	392 (83.4)	401 (85.5)	1551 (82.6)
Hispanic	325 (69.1)	322 (68.7)	334 (71.1)	336 (71.6)	1317 (70.1)
Non-Hispanic	145 (30.9)	147 (31.3)	136 (28.9)	133 (28.4)	561 (29.9)
Glycated hemoglobin level					
Glycated hemoglobin level — %	8.32±1.08	8.30±1.02	8.26±1.00	8.25±1.01	8.28±1.03
≤8.5% — no. (%)	293 (62.3)	294 (62.7)	303 (64.5)	302 (64.4)	1192 (63.5)
>8.5% — no. (%)	177 (37.7)	175 (37.3)	167 (35.5)	167 (35.6)	686 (36.5)
Glycated hemoglobin level — mmol/mol	67.46±11.84	67.20±11.20	66.78±10.97	66.69±10.99	67.03±11.25
Fasting serum glucose level					
In mg/dl	173.8±51.87	174.2±49.79	172.4±54.37	171.4±49.77	172.9±51.46
In mmol/liter	9.65±2.88	9.67±2.76	9.57±3.02	9.51±2.76	9.60±2.86
Duration of diabetes — yr	9.1±7.16	8.4±5.90	8.7±6.85	8.3±5.80	8.6±6.46

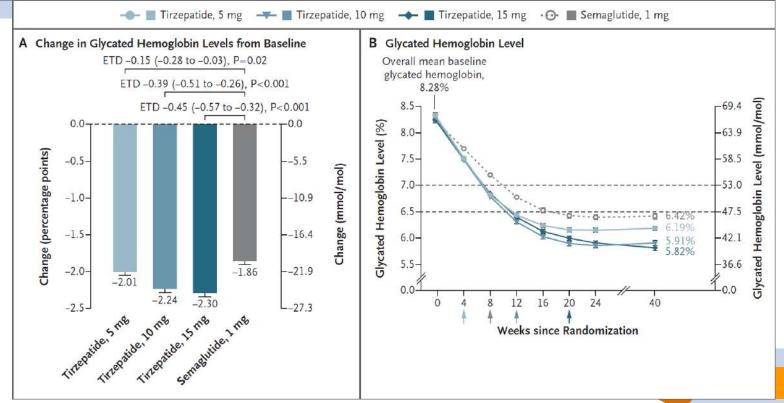
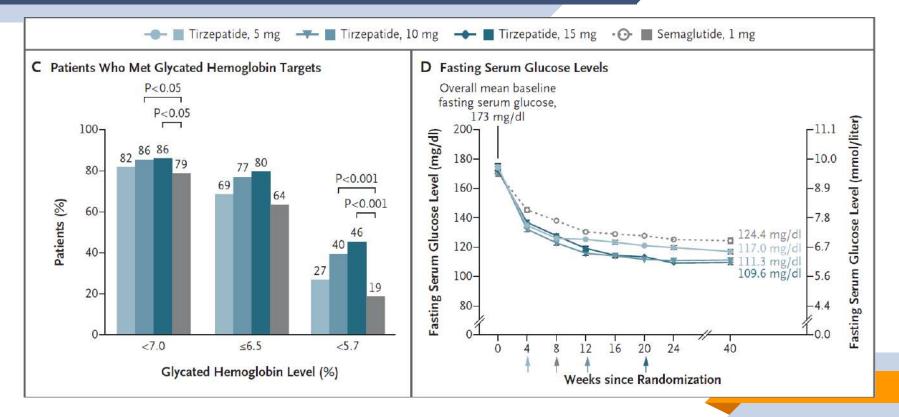
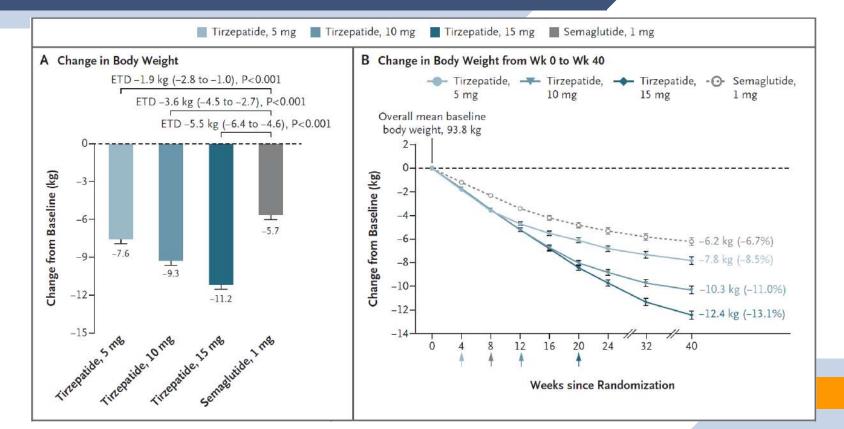
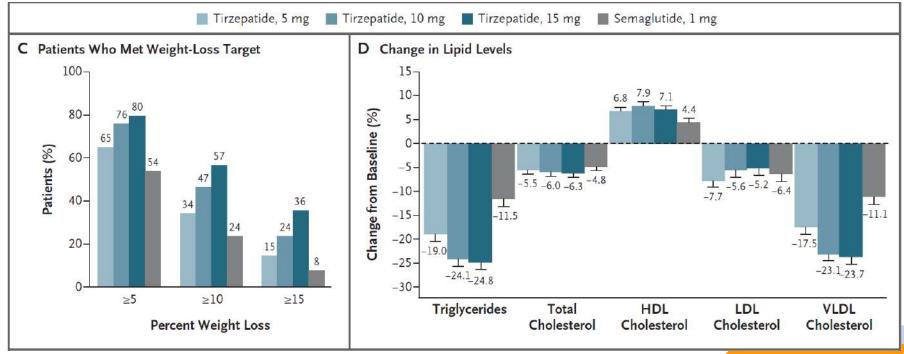

26

Table 1. Demographic and Clinical Characteristics of the Patients at Baseline in the Modified Intention-to-Treat Population.*


Table 1. Demographic and Clinical Characteristics of the Patients at Baseline in the Modified Intention-to-Treat Population.*

Characteristic		Tirzepatide	Semaglutide	Total (N = 1878)	
	5 mg (N=470)	10 mg (N=469)	15 mg (N=470)	l mg (N=469)	
BMI‡	33.8±6.85	34.3±6.60	34.5±7.11	34.2±7.15	34.2±6.93
Weight — kg	92.5±21.76	94.8±22.71	93.8±21.83	93.7±21.12	93.7±21.86
Waist circumference — cm	108.06±14.81	110.55±16.05	109.55±15.60	109.04±14.90	109.30±15.36
Estimated GFR∬					
Mean value — ml/min/1.73 m ²	96.6±17.51	95.5±16.62	96.3±16.92	95.6±17.25	96.0±17.07
Value <60 ml/min/1.73 m ² — no. (%)	19 (4.0)	15 (3.2)	11 (2.3)	19 (4.1)	64 (3.4)
Value ≥60 ml/min/1.73 m ² — no. (%)	451 (96.0)	454 (96.8)	459 (97.7)	450 (95.9)	1814 (96.6)
Urinary albumin-to-creatinine ratio — no. (%) \P					
<30	340 (72.3)	353 (75.3)	357 (76.0)	364 (77.6)	1414 (75.3)
30 to ≤300	111 (23.6)	87 (18.6)	85 (18.1)	90 (19.2)	373 (19.9)
>300	18 (3.8)	29 (6.2)	27 (5.7)	15 (3.2)	89 (4.7)
Use of metformin — no. (%)	470 (100.0)	469 (100.0)	470 (100.0)	469 (100.0)	1878 (100.0)
Blood pressure — mm Hg					
Systolic	130.53±14.11	131.47±13.77	130.45±14.32	129.96±12.99	130.60±13.81
Diastolic	78.61±8.89	80.03±9.59	78.97±8.97	79.33±8.61	79.23±9.03
Pulse rate — bpm	74.88±9.37	74.55±10.75	74.46±9.86	75.10±10.25	74.75±10.07


Result-Primary Endpoint


Result-Primary Endpoint

Result-Secondary Endpoints

Result-Secondary Endpoints

Т	Table 2. Adverse Events and Safety.*											
E	vent		Tirzepatide						Semaglutide		Total (N=1878)	
			5 mg (N=470)		10 mg (N=469)		15 mg (N=470)		1 mg (N=469)			
		No. of patients (%)	No. of events	No. of patients (%)	No. of events	No. of patients (%)	No. of events	No. of patients (%)	No. of events	No. of patients (%)	No. of events	
A	dverse events occurring in ≥5% of patients in any treatment group, according to preferred term											
	Nausea	82 (17.4)	111	90 (19.2)	124	104 (22.1)	136	84 (17.9)	126	360 (19.2)	497	
	Diarrhea	62 (13.2)	120	77 (16.4)	99	65 (13.8)	102	54 (11.5)	68	258 (13.7)	389	
	Vomiting	27 (5.7)	35	40 (8.5)	56	46 (9.8)	61	39 (8.3)	53	152 (8.1)	205	
	Dyspepsia	34 (7.2)	—	29 (6.2)	_	43 (9.1)	_	31 (6.6)		137 (7.3)		
	Decreased appetite	35 (7.4)		34 (7.2)	-	42 (8.9)	1	25 (5.3)		136 (7.2)		
	Constipation	32 (6.8)	_	21 (4.5)	1	21 (4.5)	1	27 (5.8)	1000	101 (5.4)		
	Abdominal pain	14 (3.0)	_	21 (4.5)	1	24 (5.1)	1	24 (5.1)	1000	83 (4.4)	1000	
A	l gastrointestinal adverse events	188 (40.0)	_	216 (46.1)	—	211 (44.9)	-	193 (41.2)	-	808 (43.0)	-	
0	ther adverse events											
	Hypoglycemia, blood glucose level <54 mg/dl	3 (0.6)	3	1 (0.2)	2	8 (1.7)	10	2 (0.4)	2	14 (0.7)	17	
	Severe hypoglycemia	1 (0.2)	1	0	0	1 (0.2)‡	1‡	0	0	2 (0.1)	2	
	Injection-site reaction	9 (1.9)		13 (2.8)	1 7-117	21 (4.5)		1 (0.2)	-	44 (2.3)		
	Adjudicated pancreatitis	0	200	2 (0.4)	27-17	2 (0.4)	47.00	3 (0.6)	2 1. 22 .	7 (0.4)	07. 25	
	Cholelithiasis	4 (0.9)	-	4 (0.9)		4 (0.9)		2 (0.4)		14 (0.7)		
	Hypersens itivity∬	9 (1.9)		13 (2.8)		8 (1.7)		11 (2.3)		41 (2.2)		
	Diabetic retinopathy¶	0	_	2 (0.4)		0		0	_	2 (0.1)	-	

Result-Conclusion

- All tirzepatide doses were found to be superior to semaglutide regarding to reduction in the mean HbA1c and body weight.
- More patients at the tirzepatide arm reached a composite end point of a HbA1c level <6.5% or with at least 10% weight loss.
- Reduction in body weight with tirzepatide were dosedependent.
- Weight reduction did not plateau in any of the four treatment groups at week 40.

Discussion

□ Strengths

- Large sample size with low dropout rate
- The results on the semaglutide arm were consistent with former semaglutide trials. (SUSTAIN clinical trials and STEP 2 trial)
- Limitations
 - Not blinded because of difference in devices and dose-escalation schemes
 - Relatively short duration of 40 weeks.

Appraisal

4

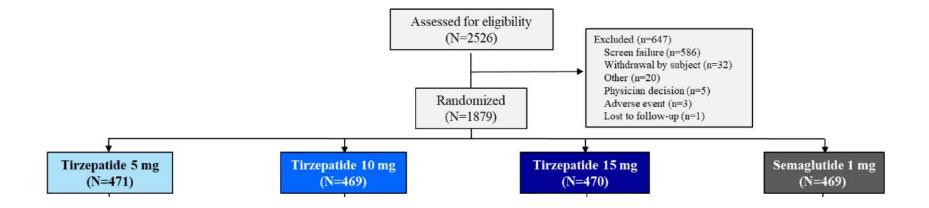
Critical Appraisal Skills Programme

Did the study address a clearly focused research question?

С

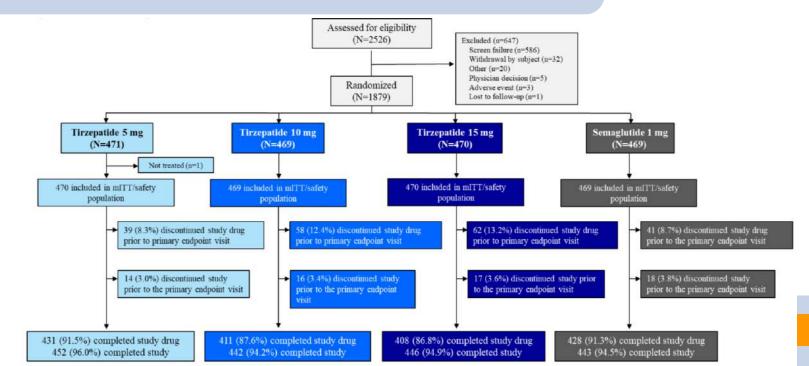
 P Patients with type 2 Diabetes, treated with ≥1500 mg Metformin/day
 I Tirzepatide 5 mg, 10 mg, 15 mg QW SC

Semaglutide 1 mg QW SC



Change in the HbA1c level and body weight from baseline to 40 weeks

Was the assignment of participants to interventions randomized?



Were all participants who entered the study accounted for at its conclusion?

Question 4-a

Were the participants "blind" to intervention they were given?

PROCEDURES

The patients were randomly assigned in a 1:1:1:1 ratio to receive a once-weekly subcutaneous injection of either tirzepatide (at a dose of 5 mg, 10 mg, or 15 mg; the doses were double-blinded) or semaglutide (1 mg) for a 40-week treatment period, followed by a 4-week safety follow-up period (Fig. S1). The patients were stratified at randomization according to country and baseline glycated hemoglobin level ($\leq 8.5\%$ or >8.5%[≤ 69 or >69 mmol per mol]).

The limitations of our trial were that treatments could not be blinded because of differences in devices and dose-escalation schemes (tirzepatide doses were blinded) and the relatively short duration of 40 weeks, which allowed only 16 weeks at a steady state for the assessment of the highest tirzepatide dose. In addition, the number of Black patients was low. Higher doses of semaglutide were not available as comparators at the time of this trial.

Question 4-b

Were the investigators "blind" to intervention they were giving to participants?

PROCEDURES

The patients were randomly assigned in a 1:1:1:1 ratio to receive a once-weekly subcutaneous injection of either tirzepatide (at a dose of 5 mg, 10 mg, or 15 mg; the doses were double-blinded) or semaglutide (1 mg) for a 40-week treatment period, followed by a 4-week safety follow-up period (Fig. S1). The patients were stratified at randomization according to country and baseline glycated hemoglobin level ($\leq 8.5\%$ or >8.5%[≤ 69 or >69 mmol per mol]).

The limitations of our trial were that treatments could not be blinded because of differences in devices and dose-escalation schemes (tirzepatide doses were blinded) and the relatively short duration of 40 weeks, which allowed only 16 weeks at a steady state for the assessment of the highest tirzepatide dose. In addition, the number of Black patients was low. Higher doses of semaglutide were not available as comparators at the time of this trial.

Question 4-c

Were the people assessing/ analysing outcomes "blinded?"

PROCEDURES

The patients were randomly assigned in a 1:1:1:1 ratio to receive a once-weekly subcutaneous injection of either tirzepatide (at a dose of 5 mg, 10 mg, or 15 mg; the doses were double-blinded) or semaglutide (1 mg) for a 40-week treatment period, followed by a 4-week safety follow-up period (Fig. S1). The patients were stratified at randomization according to country and baseline glycated hemoglobin level ($\leq 8.5\%$ or >8.5%[≤ 69 or >69 mmol per mol]).

The limitations of our trial were that treatments could not be blinded because of differences in devices and dose-escalation schemes (tirzepatide doses were blinded) and the relatively short duration of 40 weeks, which allowed only 16 weeks at a steady state for the assessment of the highest tirzepatide dose. In addition, the number of Black patients was low. Higher doses of semaglutide were not available as comparators at the time of this trial.

Were the study groups similar at the start of the randomized controlled trial?

Characteristic Tirzepatide	Semaglutide	Total (N = 1878)	
5 mg 10 mg 15 mg (N=470) (N=469) (N=470)	1 mg (N=469)		
Age — yr 56.3±10.0 57.2±10.5 55.9±10.4	56.9±10.8	56.6±10.4	
Female sex — no. (%) 265 (56.4) 231 (49.3) 256 (54.5)	244 (52.0)	996 (53.0)	
Race or ethnic group — no. (%)†			
American Indian or Alaska Native 53 (11.3) 53 (11.3) 57 (12.1)	45 (9.6)	208 (11.1)	
Asian 6 (1.3) 11 (2.3) 5 (1.1)	3 (0.6)	25 (1.3)	
Black 28 (6.0) 21 (4.5) 15 (3.2)	15 (3.2)	79 (4.2)	
White 382 (81.3) 376 (80.2) 392 (83.4)	401 (85.5)	1551 (82.6)	
Hispanic 325 (69.1) 322 (68.7) 334 (71.1)	336 (71.6)	1317 (70.1)	
Non-Hispanic 145 (30.9) 147 (31.3) 136 (28.9)	133 (28.4)	561 (29.9)	

T + 1

Were the study groups similar at the start of the randomized controlled trial?

Characteristic	Tirzepatide			Semaglutide	Total (N = 1878)	
Glycated hemoglobin level	5 mg (N=470)	10 mg (N=469)	15 mg (N=470)	l mg (N=469)		
Glycated hemoglobin level — %	8.32±1.08	8.30±1.02	8.26±1.00	8.25±1.01	8.28±1.03	
≤8.5% — no. (%)	293 (62.3)	294 (62.7)	303 (64.5)	302 (64.4)	1192 (63.5)	
>8.5% — no. (%)	177 (37.7)	175 (37.3)	167 (35.5)	167 (35.6)	686 (36.5)	
Glycated hemoglobin level — mmol/mol	67.46±11.84	67.20±11.20	66.78±10.97	66.69±10.99	67.03±11.25	
Fasting serum glucose level						
In mg/dl	173.8±51.87	174.2±49.79	172.4±54.37	171.4±49.77	172.9±51.46	
In mmol/liter	9.65±2.88	9.67±2.76	9.57±3.02	9.51±2.76	9.60±2.86	
Duration of diabetes — yr	9.1±7.16	8.4±5.90	8.7±6.85	8.3±5.80	8.6±6.46	
BMI‡	33.8±6.85	34.3±6.60	34.5±7.11	34.2±7.15	34.2±6.93	
Weight — kg	92.5±21.76	94.8±22.71	93.8±21.83	93.7±21.12	93.7±21.86	
Waist circumference — cm	108.06±14.81	110.55±16.05	109.55±15.60	109.04±14.90	109.30±15.36	

43

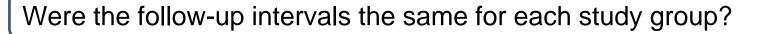
Apart from the experimental intervention, did each study group receive the same level care?

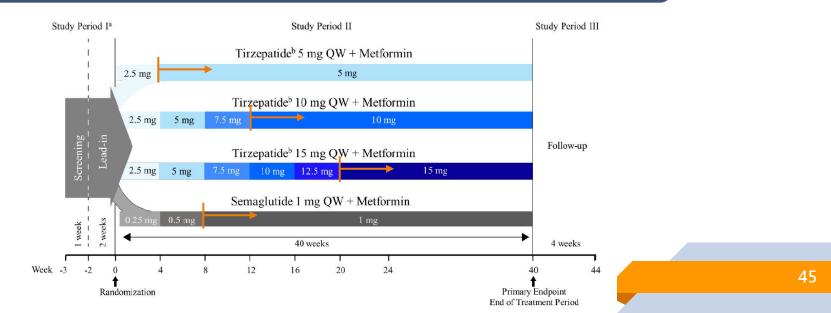
If any additional interventions were given (e.g. tests or treatments, were they similar between the study group?

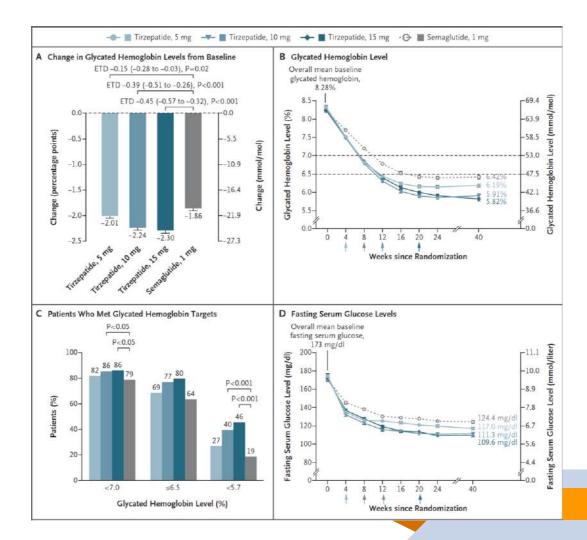
Inclusion Criteria

5. Have been on stable diabetes treatment with metformin ≥1500 mg/day during the 3 months prior to Visit 1 and between Visits 1 and 3

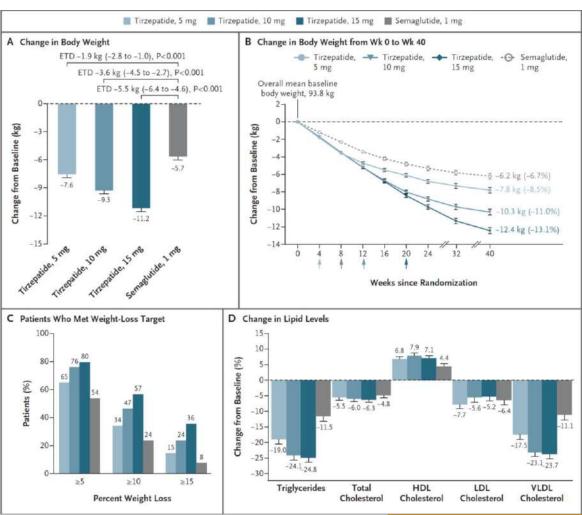
Exclusion Criteria Monotherapy: Metformin 1500-2550 mg/day


Prior/Concomitant Therapy


28. Have been treated with any antihyperglycemic medication (other than metformin) within the 3 months prior to Visit 1. An exception is for the use of insulin for gestational diabetes or short-term use (<14 days) for acute conditions such as acute illness, hospitalization, or elective surgery

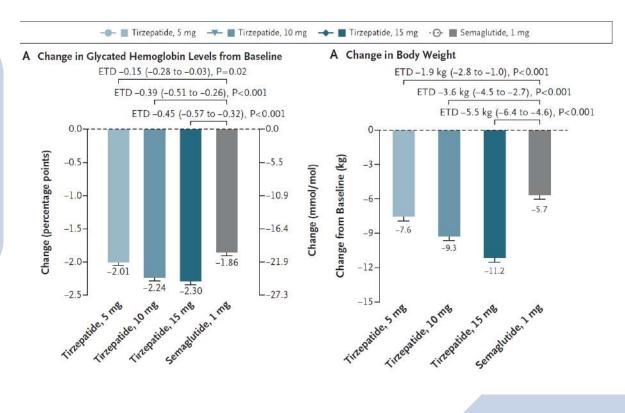

Apart from the experimental intervention, did each study group receive the same level care?

Question 7


Were the effects of intervention reported comprehensively?

Were the effects of intervention reported comprehensively?

Question 7



47

Question 8

Was the precision of the estimate of the intervention or treatment effect reported?

Question 9

Reduction in the HbA1c level (compare with semaglutide 1 mg, %):

Treatment effect (Primary endpoint)

Tirzepatide 5 mg	-0.15 [-0.28 to -0.03, p=0.02]
Tirzepatide 10 mg	-0.39 [-0.51 to -0.26, p<0.001]
Tirzepatide 15 mg	-0.45 [-0.57 to -0.32, p<0.001]

Reduction in body weight

(compare with semaglutide 1 mg kg).

Treatment effect (Secondary endpoint)

Tirzepatide 5 mg	-1.9 [-2.8 to -1.0, p<0.001]				
Tirzepatide 10 mg	-3.6 [-4.5 to -2.7, p<0.001]				
Tirzepatide 15 mg	-5.5 [-6.4 to -4.6, p<0.001]				

Do the benefits of the experimental intervention outweigh the harm and costs?

Cost-effectiveness analysis	N/A (still under investigation)
	Abdominal pain
Adverse effect	Constipation
	Decreased appetite
	Dyspepsia
	Vomiting
	Diarrhea
	Nausea

Can the results be applied to your local population/in your context?

Characteristic	Tirzepatide			Semaglutide	Total (N = 1878)	
	5 mg (N=470)	10 mg (N=469)	15 mg (N=470)	1 mg (N=469)		
Age — yr	56.3±10.0	57.2±10.5	55.9±10.4	56.9±10.8	56.6±10.4	
Female sex — no. (%)	265 (56.4)	231 (49.3)	256 (54.5)	244 (52.0)	996 (53.0)	
Race or ethnic group — no. (%)†						
American Indian or Alaska Native	53 (11.3)	53 (11.3)	57 (12.1)	45 (9.6)	208 (11.1)	
Asian	6 (1.3)	11 (2.3)	5 (1.1)	3 (0.6)	25 (1.3)	
Black	28 (6.0)	21 (4.5)	15 (3.2)	15 (3.2)	79 (4.2)	
White	382 (81.3)	376 (80.2)	392 (83.4)	401 (85.5)	1551 (82.6)	
Hispanic	325 (69.1)	322 (68.7)	334 (71.1)	336 (71.6)	1317 (70.1)	
Non-Hispanic	145 (30.9)	147 (31.3)	136 (28.9)	133 (28.4)	561 (29.9)	

Would the experimental intervention provide greater value to the people in your care than any of the existing interventions?

 Potential treatment option to reach a HbA1c goal of less than 5.7% without an increased risk of hypoglycemia.
 Possess similar cardiovascular benefits as in semaglutide.
 Long-term safety profiles are to be discussed in other ongoing trials.

F	inal Remarks			
	Question	Yes	No	Can't tell
1	Did the study address a clearly focused research question?	\checkmark		
2	Was the assignment of participants to interventions randomized?	\checkmark		
3	Were all participants who entered the study accounted for at its conclusion?	\checkmark		
4	Were the participants, investigators, and analyzer blinded?		\checkmark	

F	inal Remarks			
	Question	Yes	No	Can't tell
5	Were the study groups similar at the start of the randomized controlled trial?	\checkmark		
6	Apart from the experimental intervention, did each study group receive the same level care?			\checkmark
7	Were the effects of intervention reported comprehensively?	\checkmark		
8	Was the precision of the estimate of the intervention or treatment effect reported?	\checkmark		
				5

F	inal Remarks			
	Question	Yes	No	Can't tell
9	Do the benefits of the experimental intervention outweigh the harm and costs?	\checkmark		
10	Can the results be applied to your local population/in your context?		\checkmark	
11	Would the experimental intervention provide greater value to the people in your care than any of the existing interventions?			

Final Remarks

- According to the baseline characteristics (BMI 33-34 kg/m², Body weight 92-94 kg,) the study group may not be able to apply on Taiwanese population.
- Did not discuss the comorbidity of the participants, which is a key factor on medication choice for type 2 diabetes.
- The trial design and the analyzing methods could be described more discretely in the paper (i.e noninferiority and superiority.)
- Many data were only found in the appendix, the confidential interval and statistical significancy of some results could be stated as well.

Final Remarks

- As a first-in-class medication, tirzepatide can provide better effect on reducing HbA1c level and body weight than semaglutide.
- Long-term safety profile and application on Asian population are to be discussed in the future.
- Weight loss potential on overweight adults without type 2 diabetes is also to be discussed in the future.

Take Home Message

- According to ADA Guideline 2022, the management of type 2 diabetes depends on comorbidities and patient-centered treatment factors.
- Tirzepatide, a dual GIP and GLP-1 receptor agonist, is a potential treatment for T2DM noninferior and superior to 1 mg of semaglutide on the aspect of reducing HbA1c level and weight loss.

Reference

- Standards of Medical Care in Diabetes 2022. American Diabetes Association. Volume 45, Issue Supplement 1 January 2022
- https://medclinical.wordpress.com/2022/01/01/t2dm-%E7%9A%84%E8%97%A5%E7%89%A9%E6%B2%BB%E7%99%82-2022-ada-guidelines/ Accessed on May 6th. 2022.
- Bailey CJ. Tirzepatide: a new low for bodyweight and blood glucose. Lancet Diabetes Endocrinol. 2021 Oct;9(10):646-648. doi: 10.1016/S2213-8587(21)00217-5. Epub 2021 Aug 19. PMID: 34419226.
- Min T, Bain SC. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. *Diabetes Ther*. 2021;12(1):143-157. doi:10.1007/s13300-020-00981-0
- Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med. 2021 Aug 5;385(6):503-515. doi: 10.1056/NEJMoa2107519. Epub 2021 Jun 25. PMID: 34170647.
- Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021 Nov 13;398(10313):1811-1824. doi: 10.1016/S0140-6736(21)02188-7. Epub 2021 Oct 18. PMID: 34672967. 59

Thank you for your attention.